Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3457–3466 | Cite as

Electrochemical characterization of fine-grained blast furnace sludge after acid leaching using carbon paste electrode

  • V. NovákEmail author
  • P. Raška
  • D. Matýsek
  • B. Kostura
Original Paper


The paper deals with the study of electrochemical properties of blast furnace sludge after acid leaching (BFSL) using modified carbon paste electrodes (CPEs) in acidic (1 M HCl) and alkaline (1 M NaOH) electrolyte. A polyamide holder with exchangeable tips was developed. The effect of their geometric parameters on the electrochemical response was monitored. The electrochemical characterization was performed by cyclic voltammetry (CV) at different scan rates. The hematite and magnetite served as comparative model modifiers. The identification of reaction products was performed using the RTG diffraction and SEM/EDX analyses. It was found that reduction reactions are suppressed at acidic pH. On the contrary, in an alkaline media, a significant peak corresponding to the electrode reduction of iron oxides based on the scheme Fe3+ → Fe2+ → Fe0 was identified in the BFSL reduction region. XRD and SEM analyses of the active surface of modified CPE showed the formation of nanostructured Fe. The results provide direction for the further use of BFSL.


Blast furnace sludge Hematite Magnetite Carbon paste electrode Cyclic voltammetry 



The study was supported by grants from the Ministry of Education of the Czech Republic research project nos. SP2017/50 and no. SP2018/79. Some of the analytical work was performed using equipment that was financed by the project “Institute of Clean Technologies for Mining and Utilisation of Raw Materials for Energy”, reg. no. LO1406, and supported by the “Research and Development for Innovations Operational Programme”, which is financed by structural funds from the European Union and the state budget of the Czech Republic.


  1. 1.
    López-Delgado A, Pérez C, López FA (1998) Sorption of heavy metals on blast furnace sludge. Water Res 32(4):989–996CrossRefGoogle Scholar
  2. 2.
    Busé R, Mombelli D, Mapelli C (2014) Metals recovery from furnaces dust: Waelz process. La Metallurgia Italiana 106(5):19–27Google Scholar
  3. 3.
    Schneeberger G, Antrekowitsch J (2011) New developments in the recycling of zinc containing dusts from steel and foundry industry, European metallurgical conference, EMC 2011, Düsseldorf, 2011. Germany, EUGoogle Scholar
  4. 4.
    Drobíková K, Plachá D, Motyka O, Gabor R, Mamulová Kultáková K, Vallová S, Seidlerová J (2016) Recycling of blast furnace sludge by briquetting with starch binder: waste gas from thermal treatment utilizable as a fuel. Waste Manag 48:471–477CrossRefPubMedGoogle Scholar
  5. 5.
    Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57CrossRefGoogle Scholar
  6. 6.
    Huang X, Zhao H, Li X, Qiu W, Wu W (2007) Performance of planar SOFCs with doped strontium titanate as anode materials. Fuel Cells Bull 7:12–16CrossRefGoogle Scholar
  7. 7.
    Langová Š, Leško J, Matýsek D (2009) Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95(3-4):179–182CrossRefGoogle Scholar
  8. 8.
    Asadi Zeydabadi B, Mowla D, Shariat MH, Fathi Kalajahi J (1997) Zinc recovery from blast furnace flue dust. Hydrometallurgy 47(1):113–125CrossRefGoogle Scholar
  9. 9.
    Steer JM, Griffiths AJ (2013) Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy 140:34–41CrossRefGoogle Scholar
  10. 10.
    Zhang D, Zhang X, Yang T, Rao S, Hu W, Liu W, Chen L (2017) Selective leaching of zinc from blast furnace dust with mono-ligand and mixed-ligand complex leaching systems. Hydrometallurgy 169:219–228CrossRefGoogle Scholar
  11. 11.
    Vereš J, Lovás M, Jakabský Š, Šepelák V, Hredzák S (2012) Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy 129–130:67–73CrossRefGoogle Scholar
  12. 12.
    Li G, Wang D, Chen Z (2009) Direct reduction of solid Fe2O3 in molten CaCl2 by potentially green process. J Mater Sci Technol (Shenyang) 25:767–771Google Scholar
  13. 13.
    Park S, Seong C, Piao Y (2015) A simple dip-coating approach for preparation of three-dimensional multilayered graphene-metal oxides hybrid nanostructures as high performance lithium-ion battery electrodes. Electrochim Acta 176:1182–1190CrossRefGoogle Scholar
  14. 14.
    Švancara I, Kalcher K, Walcarius A, Vytřas K (2012) Electroanalysis with carbon paste electrodes. In: Lochmüller CH (ed) Analytical chemistry. CRC Press, Boca RatonGoogle Scholar
  15. 15.
    Bachiller PE, Tascon Garcia ML, Vazquez Barbado MD, Sanchez-Batanero P (1994) Electroanalytical study of copper and iron compounds in the solid state: application to copper ferrite characterization. J Electroanal Chem 367(1-2):99–108CrossRefGoogle Scholar
  16. 16.
    Fetisov VB, Ermanov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KZ (2004) Electrochemical dissolution of magnetite in acid solutions. J Solid State Electrochem 8:565–571CrossRefGoogle Scholar
  17. 17.
    Rodríguez-López A, Torres-Torres D, Mojica-Gomez J, Estrada-Arteaga C, Antaňo-López R (2011) Characterization by electrochemical impedance spectroscopy of magnetite nanoparticles supported on carbon paste electrode. Electrochim Acta 56(23):8078–8084CrossRefGoogle Scholar
  18. 18.
    Mouhandess MT, Chassagneux F, Durand B, Sharara ZZ, Vittori O (1985) Some advantages of carbon paste electrodes in the morphological study of finely divided iron oxides. J Mater Sci 20(9):3289–3299CrossRefGoogle Scholar
  19. 19.
    Grygar T (1997) Dissolution of pure and substituted goethites controlled by the surface reaction under conditions of abrasive stripping voltammetry. J Solid State Electrochem 1(1):77–82CrossRefGoogle Scholar
  20. 20.
    Grygar T (1998) Phenomenological kinetics of irreversible electrochemical dissolution of meta-oxide microparticles. J Solid State Electrochem 2(3):127–136CrossRefGoogle Scholar
  21. 21.
    Švancara I, Schachl K (1999) Testing of unmodified carbon paste electrodes. Chem List 93:490–499Google Scholar
  22. 22.
    Linquist J (1968) A new carbon paste electrode holder and a simple method for preparing reproducible electrode surfaces. J Electroanal Chem 18(1-2):204–205CrossRefGoogle Scholar
  23. 23.
    Švancara I, Metelka R, Vytřas K (2005). Piston-driven carbon paste electrode holders for electrochemical measurements, sensing in Electroanalysis, Pardubice, 2005. Czech Republic, EUGoogle Scholar
  24. 24.
    Arduini F, Di Giorgio F, Amine A, Cataldo F, Moscone D, Palleschi G (2010) Electroanalytical characterization of carbon black nanomaterial paste electrode: development of highly sensitive tyrosinase biosensor for catechol detection. Anal Lett 43(10-11):1688–1702CrossRefGoogle Scholar
  25. 25.
    Wang J (2006) Analytical electrochemistry, 3rd edn. Wiley, New JerseyCrossRefGoogle Scholar
  26. 26.
    Afraz A, Rafati AA, Najafi M (2014) Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. Mater Sci Eng C Mater Biol Appl 44:58–68CrossRefPubMedGoogle Scholar
  27. 27.
    Tipsawat P, Wongpratat U, Phumying S, Chanlek N, Chokprasombat K, Maensiri S (2018) Magnetite (Fe3O4) nanoparticles: synthesis, characterization and electrochemical properties. Appl Surf Sci 446:287–292CrossRefGoogle Scholar
  28. 28.
    Bachiller P, Lorenzo L, Tascón ML, Vásquez MD, Sánchez-Batanero P (1994) Electrochemical study of iron(II) and iron(III) compound mixtures in the solid state. Application to magnetite characterization. J Electroanal Chem 371(1–2):161–166Google Scholar
  29. 29.
    Shimizu K, Tschulik K, Compton RG (2016) Exploring the mineral–water interface: reduction and reaction kinetics of single hematite (α-Fe2O3) nanoparticles. Chem Sci 7(2):1408–1414CrossRefPubMedGoogle Scholar
  30. 30.
    Ivanova YA, Monteiro JF, Teixeira LB, Vitorino N, Kovalevsky AV, Frade JR (2017) Designed porous microstructures for elektrochemicalreduction of bulk hematite ceramics. Mater Des 122:307–314CrossRefGoogle Scholar
  31. 31.
    Monteiro JF, Ivanova YA, Kovalevsky AV, Ivanou DK, Frade JR (2016) Reduction of magnetite to metallic iron in strong alkaline medium. Electrochim Acta 193:284–292CrossRefGoogle Scholar
  32. 32.
    Allanore A, Lavelaine H, Valentin G, Birat JP, Delcroix P, Lapicque F (2010) Observation and modeling of the reduction of hematite particles to metal in alkaline solution by electrolysis. Electrochim Acta 55(12):4007–4013CrossRefGoogle Scholar
  33. 33.
    Joiret S, Keddam M, Nóvoa XR, Pérez MC, Rangel C, Takenouti H (2002) Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. Cem Concr Compos 24(1):7–15CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryVŠB - Technical University of OstravaOstrava - PorubaCzech Republic
  2. 2.Department of Geological EngineeringVŠB-Technical University of OstravaOstrava - PorubaCzech Republic

Personalised recommendations