Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3535–3546 | Cite as

Enhanced visible-light photocatalytic performance of Fe3O4 nanopyramids for water splitting and dye degradation

  • I. Neelakanta ReddyEmail author
  • Adem Sreedhar
  • Ch. Venkata Reddy
  • Jaesool ShimEmail author
  • Migyung Cho
  • Dongseob KimEmail author
  • Jin Seog Gwag
  • Kisoo YooEmail author
Original Paper


Iron oxide (Fe3O4) pyramid nanostructures were synthesized via a co-precipitation method, without using surfactants or template, for photocatalytic and photoelectrocatalytic activities. The as-made Fe3O4 was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), UV–vis spectroscopy, photoluminescence spectroscopy, N2 adsorption–desorption analysis, and X-ray photoelectron spectroscopy (XPS). The data clearly demonstrate that the Fe3O4 nanostructures display excellent crystallinity, uniform morphology with a Brunauer–Emmett–Teller (BET) surface area of 52.95 m2 g−1, and an optical bandgap of 2.17 eV, which allows them to serve as outstanding catalysts under visible irradiation. The highest photocatalytic activity of ~ 97% was achieved in the degradation of rhodamine B under visible irradiation, with a degradation rate constant of 0.0322 min−1 at room temperature. Further, electrochemical studies demonstrated that the Fe3O4 electrode possesses good electrocatalytic activity in 0.1 M KOH electrolyte. The highest photocurrent density of 1.2 × 10−4 mA cm−2 was observed in the water splitting reaction. The Fe3O4 nanostructures exhibited superior performance in terms of both dye degradation and photoelectrochemical activity.


Fe3O4 Nanostructures Degradation Photoelectrochemical Pyramid-like structures 


Funding information

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (No. 2015R1A2A2A01003741, 2015R1C1A2A01052256, 2018R1D1A1B07048307, and 2017R1A4A1015581).

Supplementary material

10008_2018_4054_Fig8_ESM.png (376 kb)

(PNG 375 kb)

10008_2018_4054_MOESM1_ESM.tif (616 kb)
High Resolution Image (TIFF 616 kb)


  1. 1.
    Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7):3026–3033CrossRefPubMedGoogle Scholar
  2. 2.
    Chen H, Yang S (2016) Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horiz 1(2):96–108CrossRefGoogle Scholar
  3. 3.
    Fu H, Pan C, Yao W, Zhu Y (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. J Phys Chem B 109(47):22432–22439CrossRefPubMedGoogle Scholar
  4. 4.
    Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1(17):2607–2612CrossRefGoogle Scholar
  5. 5.
    Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125(10):3082–3089CrossRefPubMedGoogle Scholar
  6. 6.
    Fu Y, Wang X (2011) Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind Eng Chem Res 50(12):7210–7218CrossRefGoogle Scholar
  7. 7.
    Zhang LZ, Djerdj I, Cao M, Antonietti M, Niederberger M (2007) Nonaqueous sol–gel synthesis of a nanocrystalline InNbO4 visible-light photocatalyst. Adv Mater 19(16):2083–2086CrossRefGoogle Scholar
  8. 8.
    Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43(34):4463–4466CrossRefGoogle Scholar
  9. 9.
    Gondal MA, Chang X, Ali MA, Yamani ZH, Zhou Q, Ji G (2011) Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532nm pulsed laser exposure. Appl Catal A Gen 397(1-2):192–200CrossRefGoogle Scholar
  10. 10.
    Shi H, Gondal MA, Al-Saadi AA, Chang X (2015) Visible-light-induced photodegradation enhancement of methyl orange over bismuth oxybromide through a semiconductor mediated process. J Adv Oxid Technol 18:78–84Google Scholar
  11. 11.
    Khalil SS, Uvarov V, Fronton S, Popov I, Sasson Y (2012) A novel heterojunction biobr/bismuth oxyhydrate photocatalyst with highly enhanced visible light photocatalytic properties. J Phys Chem C 116(20):11004–11012CrossRefGoogle Scholar
  12. 12.
    Fu J, Tian YL, Chang BB, Xi FN, Dong XP (2012) BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J Mater Chem 22(39):21159–21166CrossRefGoogle Scholar
  13. 13.
    Liu YY, Son WJ, Lu JB, Huang BB, Dai Y, Whangbo MH (2011) Composition dependence of the photocatalytic activities of biocl1−xbrx solid solutions under visible light. Chem Eur J 17(34):9342–9349CrossRefPubMedGoogle Scholar
  14. 14.
    Kong L, Jiang Z, Xiao TC, Lu LF, Jonesac MO, Edwards PP (2011) Exceptional visible-light-driven photocatalytic activity over BiOBr–ZnFe2O4 heterojunctions. Chem Commun 47(19):5512–5514CrossRefGoogle Scholar
  15. 15.
    Ye L, Liu J, Jiang Z, Peng T, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B Environ 142–143:1–7Google Scholar
  16. 16.
    Ma PC, Jiang W, Wang FH, Li FS, Shen P, Chen MD, Wang YJ, Liu J, Li PY (2013) Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets. J Alloys Compd 578:501–506CrossRefGoogle Scholar
  17. 17.
    Ma WF, Zhang Y, Li LL, You LJ, Zhang P, Zhang YT, Li JM, Yu M, Guo J, Lu HJ, Wang CC (2014) Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core–shell microspheres. Appl Catal B Environ 156–157:314–322Google Scholar
  18. 18.
    Yao YR, Huang WZ, Zhou H, Yin HY, Zheng YF, Song XC (2014) A novel Fe3O4@SiO2@BiOBr photocatalyst with highly active visible light photocatalytic properties. Mater Chem Phys 148(3):896–902CrossRefGoogle Scholar
  19. 19.
    Han C, Huang G, Zhu D, Hu K (2017) Facile synthesis of MoS2/Fe3O4 nanocomposite with excellent photo-Fenton-like catalytic performance. Mater Chem Phys 200:16–22CrossRefGoogle Scholar
  20. 20.
    Palanisamy B, Babu CM, Sundaravel B, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252–253:233–242CrossRefPubMedGoogle Scholar
  21. 21.
    Xi G, Yue B, Cao J, Ye J (2011) Fe3O4/WO3 hierarchical core–shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J 17(18):5145–5154CrossRefPubMedGoogle Scholar
  22. 22.
    Allah TAG, Kato S, Satokawa S, Kojima T (2007) Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite. Solid State Sci 9(8):737–743CrossRefGoogle Scholar
  23. 23.
    Feng Q, Li S, Ma W, Fan HJ, Wan X, Lei Y, Chen Z, Yang J, Qin B (2018) Synthesis and characterization of Fe3O4/ZnO-GO nanocomposites with improved photocatalytic degradation methyl orange under visible light irradiation. J Alloys Compd 737:197–206CrossRefGoogle Scholar
  24. 24.
    Sahar S, Zeb A, Liu Y, Ullah N, Xu A (2017) Enhanced Fenton, photo-Fenton and peroxidase-like activity andstability over Fe3O4/g-C3N4 nanocomposites. Chin J Catal 38(12):2110–2119CrossRefGoogle Scholar
  25. 25.
    Arshada A, Iqbal J, Ahmad I, Israr M (2018) Graphene/Fe3O4 nanocomposite: interplay between photo-Fenton type reaction, and carbon purity for the removal of methyl orange. Ceram Int 44(3):2643–2648CrossRefGoogle Scholar
  26. 26.
    Wang ZX, Wu LM, Chen M, Zhou SX (2009) Facile synthesis of superparamagnetic fluorescent Fe3O4/ZnS hollow nanospheres. J Am Chem Soc 131(32):11276–11277CrossRefPubMedGoogle Scholar
  27. 27.
    Chen HL, Lu YM, Hwang WS (2005) Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater Trans 46(4):872–879CrossRefGoogle Scholar
  28. 28.
    Chen R, Yin C, Liu H, Wei Y (2015) Degradation of rhodamine B during the formation of Fe3O4 nanoparticles by air oxidation of Fe(OH)2. J Mol Catal A Chem 397:114–119CrossRefGoogle Scholar
  29. 29.
    Zhu M, Diao G (2011) Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J Phys Chem C 115(39):18923–18934CrossRefGoogle Scholar
  30. 30.
    Jiang Y, Li G, Li X, Lu S, Wang L, Zhang X (2014) Water-dispersible Fe3O4 nanowires as efficient supports for noble-metal catalyzed aqueous reactions. J Mater Chem A 2(13):4779–4787CrossRefGoogle Scholar
  31. 31.
    Lv H, Jiangn R, Li Y, Zhang X, Wang J (2015) Microemulsion-mediated hydrothermal growth of pagoda-like Fe3O4 microstructures and their application in a lithium–air battery. Ceram Int 41(7):8843–8848CrossRefGoogle Scholar
  32. 32.
    Liu XM, Fu SY, Xiao HM (2006) Fabrication of octahedral magnetite microcrystals. Mater Lett 60(24):2979–2983CrossRefGoogle Scholar
  33. 33.
    Wu M, Xiong Y, Jia Y, Niu H, Qi H, Ye J, Chen Q (2005) Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chem Phys Lett 401(4-6):374–379CrossRefGoogle Scholar
  34. 34.
    Katiyar A, Dhar P, Nandi T, Das SK (2016) Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. J Magn Magn Mater 419:588–599CrossRefGoogle Scholar
  35. 35.
    Liu F, Zhang CH, Tian J, Xiao C, Shen C, Li J, Gao H (2005) Novel nanopyramid arrays of magnetite. Adv Mater 17(15):1893–1897CrossRefGoogle Scholar
  36. 36.
    Zhang L, Li Q, Liu S, Ang M, Tade MO, Gu HC (2011) Synthesis of pyramidal, cubical and truncated octahedral magnetite nanocrystals by controlling reaction heating rate. Adv Powder Technol 22(4):532–536CrossRefGoogle Scholar
  37. 37.
    Zeng Y, Hao R, Xing BG, Hou YL, Xu ZC (2010) One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chem Commun 46(22):3920–3922CrossRefGoogle Scholar
  38. 38.
    Li X, Si Z, Lei Y, Tang J, Wang S, Su S, Song S, Zhao L, Zhang H (2010) Direct hydrothermal synthesis of single-crystalline triangular Fe3O4 nanoprisms. Cryst Eng Comm 12(7):2060–2063CrossRefGoogle Scholar
  39. 39.
    Zhang WD, Xiao HM, Zhu LP, Fu SY (2009) Template-free solvothermal synthesis and magnetic properties of novel single-crystalline magnetite nanoplates. J Alloys Compd 477(1-2):736–738CrossRefGoogle Scholar
  40. 40.
    Zhuang L, Zhang W, Zhao Y, Shen H, Lin H, Liang J (2015) Preparation and characterization of Fe3O4 particles with novel nanosheets morphology and magnetochromatic property by a modified solvothermal method. Sci Rep 5(1):9320CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Majumder S, Dey S, Bagani K, Dey SK, Banerjee S, Kumar S (2015) A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors. Dalton Trans 44(16):7190–7202CrossRefPubMedGoogle Scholar
  42. 42.
    Han C, Ma J, Wu H, Yaowei HK (2015) A low-cost and high-yield production of magnetite nanorods with high saturation magnetization. J Chil Chem Soc 60(1):2799–2802CrossRefGoogle Scholar
  43. 43.
    Sneha L, Singh S, Sinha A (2014) Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater 356:21–31CrossRefGoogle Scholar
  44. 44.
    Herlekar M, Barve S, Kumar R (2014) Plant-mediated green synthesis of iron nanoparticles. J Nanopart 2014:1–9CrossRefGoogle Scholar
  45. 45.
    Yang C, Wu J, Hou Y (2011) Fe3O4 nanostructures: synthesis, growth mechanism, properties and applications. Chem Commun 47(18):5130–5141CrossRefGoogle Scholar
  46. 46.
    Ghandoor HE, Zidan HM, Khalil MMH, Ismail MIM (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 7:5734–5745Google Scholar
  47. 47.
    Zhang Q, Zhang Y, Meng Z, Tong W, Yu X, An Q (2017) Constructing the magnetic bifunctional graphene/titania nanosheet-based composite photocatalysts for enhanced visible-light photodegradation of MB and electrochemical ORR from polluted water. Sci Rep 7(1):12296CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Badawy SM, El-Latif AAA (2017) Synthesis and characterizations of magnetite nanocomposite films for radiation shielding. Polym Compos 38(5):974–980CrossRefGoogle Scholar
  49. 49.
    Cheng W, Tang K, Qi Y, Sheng J, Liu Z (2010) One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. J Mater Chem 20(9):1799–1805CrossRefGoogle Scholar
  50. 50.
    Sadat ME, Baghbador MK, Dunn AW, Wagner HP, Ewing RC, Zhang J, Xu H, Pauletti GM, Mast DB, Shi D (2014) Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl Phys Lett 105(9):091903CrossRefGoogle Scholar
  51. 51.
    Arras R, Calmels L, Fonrose BW (2012) Half-metallicity, magnetic moments, and gap states in oxygen-deficient magnetite for spintronic applications. Appl Phys Lett 100(3):032403CrossRefGoogle Scholar
  52. 52.
    Ma J, Wang L, Wu Y, Dong X, Ma Q, Qiao C, Zhang Q, Zhang J (2014) Facile synthesis of Fe3O4 nanoparticles with a high specific surface area. Mater Trans 55(12):1900–1902CrossRefGoogle Scholar
  53. 53.
    Ming J, Ming H, Yang W, Kwak W, Park J, Zheng J, Sun Y (2015) A sustainable iron-based sodium ion battery of porous carbon-Fe3O4/Na2FeP2O7 with high performance. RSC Adv 5(12):8793–8800CrossRefGoogle Scholar
  54. 54.
    Xu P, Zeng G, Huang D, Liu L, Lai C, Chen M, Zhang C, He X, Lai M, He Y (2014) Photocatalytic degradation of phenol by the heterogeneous Fe3O4 nanoparticles and oxalate complex system. RSC Adv 4(77):40828–40836CrossRefGoogle Scholar
  55. 55.
    Guo P, Jin X (2018) The catalytic effect of nano-Fe3O4 on RhB decolorization by CGDE process. Catal Commun 106:101–105CrossRefGoogle Scholar
  56. 56.
    Gao Y, Hu C, Zheng WJ, Yang S, Li F, Sun SD, Zrinyi M, Osada Y, Yang ZM, Chen YM (2016) Fe3O4 anisotropic nanostructures in hydrogels: efficient catalysts for the rapid removal of organic dyes from wastewater. ChemPhysChem 17(13):1999–2007CrossRefPubMedGoogle Scholar
  57. 57.
    Yue G, Li F, Tan F, Li G, Chen C, Wu J (2014) Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Adv 4(109):64068–64074CrossRefGoogle Scholar
  58. 58.
    Zheng M, Huo J, Tu Y, Jia J, Wu J, Lan Z (2016) An in situ polymerized PEDOT/Fe3O4 composite as a Pt-free counter electrode for highly efficient dye sensitized solar cells. RSC Adv 6(2):1637–1643CrossRefGoogle Scholar
  59. 59.
    Yao J, Zhang K, Wang W, Zuo X, Yang Q, Wu M, Li G (2018) Great enhancement of electrochemical cyclic voltammetry stabilization of Fe3O4 microspheres by introducing 3DRGO. Electrochim Acta 279:168–176CrossRefGoogle Scholar
  60. 60.
    Wang L, Shi Y, Wang Y, Zhang H, Zhou H, Wei Y, Tao S, Ma T (2014) Composite catalyst of rosin carbon/Fe3O4: highly efficient counter electrode for dye-sensitized solar cells. Chem Commun 50(14):1701–1703CrossRefGoogle Scholar
  61. 61.
    Wang L, Shi Y, Zhang H, Bai X, Wang Y, Ma T (2014) Iron oxide nanostructures as highly efficient heterogeneous catalyst for mesoscopic photovoltaics. J Mater Chem A 2(37):15279–15283CrossRefGoogle Scholar
  62. 62.
    Zhou H, Yin J, Nie Z, Yang Z, Li D, Wang J, Liu X, Jin C, Zhang X, Ma T (2016) Earth-abundant and nano-micro composite catalysts of Fe3O4@reduced graphene oxide for green and economical mesoscopic photovoltaic devices with high efficiencies up to 9%. J Mater Chem A 4(1):67–73CrossRefGoogle Scholar
  63. 63.
    Wei X, Li Y, Xu W, Zhang K, Yin J, Shi S, Wei J, Di F, Guo J, Wang C, Chu C, Sui N, Chen B, Zhang Y, Hao H, Zhang X, Zhao J, Zhou H, Wang S (2017) From two-dimensional graphene oxide to three-dimensional honeycomb-like Ni3S2@graphene oxide composite: insight into structure and electrocatalytic properties. R Soc Open Sci 4(12):171409CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yusoff N, VijayKumar S, Pandikumar A, Huang NM, Marlinda AR, Anamt MN (2015) Core-shell Fe3O4-ZnO nanoparticles decorated on reduced graphene oxide for enhanced photoelectrochemical water splitting. Ceram Int 41(3):5117–5128CrossRefGoogle Scholar
  65. 65.
    Yao YR, Huang WZ, Zhou H, Zheng YF, Song XC (2014) Self-assembly of dandelion-like Fe3O4@C@BiOCl magnetic nanocomposites with excellent solar-driven photocatalytic properties. J Nanopart Res 16(6):2451CrossRefGoogle Scholar
  66. 66.
    Zhang W, Kong C, Lu G (2015) Super-paramagnetic nano-Fe3O4/graphene for visible-light-driven hydrogen evolution. Chem Commun 51(50):10158–10161CrossRefGoogle Scholar
  67. 67.
    Fang B, Wang G, Zhang W, Li M, Kan X (2005) Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanal 17(9):744–748CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea
  2. 2.Department of PhysicsYeungnam UniversityGyeongsanSouth Korea
  3. 3.School of Information EngineeringTongmyong UniversityBusanSouth Korea
  4. 4.Aircraft System Technology GroupKorea Institute of Industrial TechnologyYeongcheon-siSouth Korea

Personalised recommendations