Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3431–3442 | Cite as

Layered LiNi0.80Co0.15Al0.05O2 as cathode material for hybrid Li+/Na+ batteries

  • Li-Na Xiao
  • Xiang Ding
  • Zhong-Feng Tang
  • Xiao-Dong He
  • Jia-Ying Liao
  • Yan-Hua Cui
  • Chun-Hua ChenEmail author
Original Paper


LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g−1 and 95% coulombic efficiency under 0.1 C (1 C = 120 mA g−1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g−1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.


Hybrid ion battery Layer-structured oxide Ternary cathode Cycle life Rate capability 


Funding information

This study was supported by National Natural Science Foundation of China (grant no. 51577175), NSAF (grant no. U1630106), Hefei Center of Materials Science and Technology (2014FXZY006) and Education Ministry of Anhui Province (KJ2014ZD36). We are also grateful to Elementec Ltd. in Suzhou.

Supplementary material

10008_2018_4053_MOESM1_ESM.docx (2 mb)
ESM 1 (DOCX 2029 kb)


  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefPubMedGoogle Scholar
  2. 2.
    Sun YK, Myung ST, Park BC, Prakash J, Belharouak I, Amine K (2009) Nat Mater 8(4):320–324. High-energy cathode material for long-life and safe lithium batteriesCrossRefPubMedGoogle Scholar
  3. 3.
    Chen L, Gu QW, Zhou XF, Lee SX, Xia YG, Liu ZP (2013) New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Sci Rep 3(1):1946CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bian XF, Gao Y, Fu Q, Indris S, Ju YM, Meng Y, Du F, Bramnik N, Ehrenberg H, Wei YJ (2017) A long cycle-life and high safety Na+/Mg2+ hybrid-ion battery built by using a TiS2 derived titanium sulfide cathode. J Mater Chem A 5(2):600–608CrossRefGoogle Scholar
  5. 5.
    Gao T, Han FD, Zhu YJ, Suo LM, Luo C, Xu K, Wang CS (2015) Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv Energy Mater 5(5):1401507CrossRefGoogle Scholar
  6. 6.
    Barker J, Gover RKB, Burns P, Bryan AJ (2006) Hybrid—ion a lithium-ion cell based on a sodium insertion material. Electrochem Solid State Lett 9(4):A190–A192CrossRefGoogle Scholar
  7. 7.
    An QY, Xiong FY, Wei QL, Sheng JZ, He L, Ma DL, Yao Y, Mai LQ (2015) Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers : superior Li storage performance and insertion/extraction mechanism. Adv Energy Mater 1401963Google Scholar
  8. 8.
    Song WX, Ji XB, Wu ZP, Zhu YR, Yao YP, Chen QY, Banks CE (2013) Na2FePO4F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. Phys Chem Chem Phys 15(34):14357–14363CrossRefPubMedGoogle Scholar
  9. 9.
    Yagi S, Ichitsubo T, Shirai Y, Yanai S, Doi T, Murase K, Matsubara E (2014) A concept of dual-salt polyvalent-metal storage battery. J Mater Chem A 2(4):1144–1149CrossRefGoogle Scholar
  10. 10.
    Wu N, Yang ZZ, Yao HR, Yin YX, Gu L, Guo YG (2015) Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium–magnesium co-intercalation. Angew Chem 54(19):5757–5761CrossRefGoogle Scholar
  11. 11.
    Ichitsubo T, Okamoto S, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Goto N, Doi T, Matsubara E (2015) Toward “rocking-chair type” Mg–Li dual-salt batteries. J Mater Chem A 3(19):10188–10194CrossRefGoogle Scholar
  12. 12.
    Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-Gonzalez J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901CrossRefGoogle Scholar
  13. 13.
    Kalluri S, Pang WK, Seng KH, Chen Z, Guo Z, Liu HK, Dou SX (2015) One-dimensional nanostructured design of Li1+x (Mn1/3Ni1/3Fe1/3)O2 as a dual cathode for lithium-ion and sodium-ion batteries. J Mater Chem A 3(1):250–257CrossRefGoogle Scholar
  14. 14.
    Wei ZX, Gao Y, Wang L, Zhang CY, Bian XF, Fu Q, Wang CZ, Wei YJ, Du F, Chen G (2016) Lithium-rich layered oxide Li1.18Ni0.15Co0.15Mn0.52O2 as the cathode material for hybrid sodium-ion batteries. Chem Eur J 22(33):11610–11616CrossRefPubMedGoogle Scholar
  15. 15.
    Lee MJ, Lee S, Oh P, Kim Y, Cho J (2014) High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett 14(2):993–999CrossRefPubMedGoogle Scholar
  16. 16.
    Hu LH, Wu FY, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4(1):1687CrossRefGoogle Scholar
  17. 17.
    Sun YK, Lee DJ, Lee YJ, Chen Z, Myung S (2013) Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl Mater Interfaces 5(21):11434–11440CrossRefPubMedGoogle Scholar
  18. 18.
    Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) LiNi1/3Co1/3Mn1/3O2—graphene composite as a promising cathode for lithium-ion batteries. ACS Appl Mater Interfaces 3:2966–2972CrossRefGoogle Scholar
  19. 19.
    Nitta N, Wu FX, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264CrossRefGoogle Scholar
  20. 20.
    Yuan LX, Wang ZH, Zhang WX, Hu XL, Chen JT, Huang YH, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284CrossRefGoogle Scholar
  21. 21.
    Tang W, Hou YY, Wang FX, Liu LL, Wu YP, Zhu K (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett 13(5):2036–2040CrossRefPubMedGoogle Scholar
  22. 22.
    Wang YG, He P, Zhou HS (2011) Olivine LiFePO4: development and future. Energy Environ Sci 4(3):805–817CrossRefGoogle Scholar
  23. 23.
    Hwang JH, Yoon CS, Belharouak I, Sun YK (2016) A comprehensive study of the role of transition metals in O3-type layered Na[Nix Coy Mnz]O2 (x = 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries. J Mater Chem A 4(46):17952–17959CrossRefGoogle Scholar
  24. 24.
    Wang PF, You Y, Yin YX, Guo YG (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with proved rate performance and cycling stability. J Mater Chem A 4(45):17660–17664CrossRefGoogle Scholar
  25. 25.
    Zheng LT, Li JR, Obrovac MN (2017) Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3 − xCuxMn2/3O2 in sodium cells. Chem Mater 29(4):1623–1631CrossRefGoogle Scholar
  26. 26.
    Tang ZF, Bao JJ, Du QX, Shao Y, Gao M, Zou BK, Chen CH (2016) Surface surgery of the nickel-rich cathode material LiNi0.815Co0.15Al0.035O2: toward a complete and ordered surface layered structure and better electrochemical properties. ACS Appl Mater Interfaces 8(50):34879–34887CrossRefPubMedGoogle Scholar
  27. 27.
    Goodenough JB, Wickham DG, Croft WJ (1958) Some ferrimagnetic properties of the system LixNi1 − xO. J Appl Phys 29(3):382–383CrossRefGoogle Scholar
  28. 28.
    Trease MN, Seymour DL, Radin MD, Liu HD, Liu H, Hy S, Chernova N, Parikh P, Devaraj A, Wiaderek KM, Chupas PJ, Chapman KW, Whittingham MS, Meng YS, Van AV, Grey PC (2016) Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2. Chem Mater 28(22):8170–8180CrossRefGoogle Scholar
  29. 29.
    Xie HB, Du K, Hu GR, Peng ZD, Cao YB (2016) The role of sodium in LiNi0.8Co0.15Al0.05O2 cathode material and its electrochemical behaviors. J Phys Chem C 120(6):3235–3241CrossRefGoogle Scholar
  30. 30.
    Ponrouch A, Marchante E, Courty M, Tarascon JM, Palacin MR (2012) In search of an optimized electrolyte for Na-ion batteries. Energy Environ Sci 5(9):8572–8583CrossRefGoogle Scholar
  31. 31.
    Liu W, Oh P, Liu X, Lee MJ, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transitional-metal oxide for high-energy lithium-ion batteries. Angew Chem Int Ed 54(15):4440–4457CrossRefGoogle Scholar
  32. 32.
    Delmas C, Croguennec L (2002) Layered Li (Ni, M) O2 systems as the cathode material in lithium-ion batteries. MRS Bull 27(08):608–612CrossRefGoogle Scholar
  33. 33.
    Yu HJ, Guo SH, Zhu YB, Ishida M, Zhou HS (2014) Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries. Chem Commun 50(4):457–459CrossRefGoogle Scholar
  34. 34.
    Oh SM, Myung ST, Hwang JY, Scrosati B, Amine K, Sun YK (2014) High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chem Mater 2:66165–66171Google Scholar
  35. 35.
    Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) P2-type Nax[Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries. Nat Mater 11(6):512–517CrossRefPubMedGoogle Scholar
  36. 36.
    Li YM, Yang ZZ, Xu SY, Mu LQ, Gu L, Hu YS, Li H, Chen LQ (2015) Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2:150003Google Scholar
  37. 37.
    Xie HB, Du K, Hu GR, Duan JG, Peng ZD, Zhang ZJ, Cao YB (2015) Synthesis of LiNi0.80Co0.15Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties. J Mater Chem A 3(40):20236–20243CrossRefGoogle Scholar
  38. 38.
    Li W, Reimers JN, Dahn JR (1993) In situ X-ray diffraction and electrochemical studies of Li1 − xNiO2. Solid State Ionics 67(1-2):123–130CrossRefGoogle Scholar
  39. 39.
    Li X, Ge WJ, Wang H, Yan XX, Deng BW, Chen T, Qu MZ (2017) Enhancing cycle stability and storage property of LiNi0.8Co0.15Al0.05O2 by using fast cooling method. Electrochim Acta 227:225–234CrossRefGoogle Scholar
  40. 40.
    Robert R, Bünzli C, Berg EJ, Novák P (2015) Activation mechanism of LiNi0.80Co0.15Al0.05O2: surface and bulk operando electrochemical, differential electrochemical mass spectrometry, and X-ray diffraction analyses. Chem Mater 27(2):526–536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li-Na Xiao
    • 1
  • Xiang Ding
    • 1
  • Zhong-Feng Tang
    • 1
  • Xiao-Dong He
    • 1
  • Jia-Ying Liao
    • 1
  • Yan-Hua Cui
    • 2
  • Chun-Hua Chen
    • 1
    Email author
  1. 1.CAS Key Laboratory of Materials for Energy Conversions, Department of Materials Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Institute of Electronic Engineering, CAEPMianyangChina

Personalised recommendations