Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3419–3430 | Cite as

Mechanochemically prepared polyaniline and graphene-based nanocomposites as electrodes of supercapacitors

  • Oleg Yu. PosudievskyEmail author
  • Olga A. Kozarenko
  • Vyacheslav S. Dyadyun
  • Igor E. Kotenko
  • Vyacheslav G. Koshechko
  • Vitaly D. Pokhodenko
Original Paper


Conductive nanocomposites based on polyaniline and graphene (PAni/Gr) were prepared by cheap and efficient mechanochemical method. The uniform distribution of Gr nanoparticles in the polymer matrix and the ordering of the polymer chains due to the action of mechanical shear stresses, which were established by TEM, stipulated high specific capacitance about 920 F g−1 in − 0.2–1.0 V vs. Ag/AgCl potential range. PAni/Gr-based electrodes are able to provide the specific capacitance of ~ 750 F g−1 at 2 A g−1 in symmetric supercapacitors (SSC) and stably cycle at the operating voltage V = 0.65 V for 10,000 charge-discharge cycles with 96% capacitance retention, whereas the increasing of V leads to the loss of stability as a result of the cathode degradation. PAni/Gr-based SSC possessed improved self-discharge showed high rate capability, and the specific power of such SSC could reach ~ 10 kW kg−1 at the specific energy of ~ 18 W h kg−1.


Funding information

This work was supported by the Targeted Research & Development Initiatives of the Science and Technology Center in Ukraine and the National Academy of Sciences of Ukraine and Targeted Comprehensive Fundamental Research Program of the National Academy of Sciences of Ukraine “Fundamental problems of creating new nanomaterials and nanotechnologies.”

Supplementary material

10008_2018_4052_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1104 kb)


  1. 1.
    González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energy Rev 58:1189–1206CrossRefGoogle Scholar
  2. 2.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefPubMedGoogle Scholar
  3. 3.
    Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R (2011) Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew Chem 50(7):1699–1701CrossRefGoogle Scholar
  4. 4.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  5. 5.
    Simon P, Burke A (2008) Nanostructured carbons: double-layer capacitance and more. Electrochem Soc Interface 17:38–43Google Scholar
  6. 6.
    Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L, Zhu Y, Zhou Q, Wu Y, Huang W (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46(22):6816–6854CrossRefPubMedGoogle Scholar
  7. 7.
    Gao Y (2017) Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res Lett 12:387CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Borenstein A, Hanna O, Attias R, Luski S, Broussebc T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672CrossRefGoogle Scholar
  9. 9.
    Hong S-C, Sanghoon K, Jang W-J, Han T-H, Hong J-P, Oh J-S, Hwang T, Lee Y, Lee J-H, Nam J-D (2014) Supercapacitor characteristics of pressurized RuO2/carbon powder as binder-free electrodes. RSC Adv 4(89):48276–48284CrossRefGoogle Scholar
  10. 10.
    Chuang C-M, Huang C-W, Teng H, Ting J-M (2012) Hydrothermally synthesized RuO2/carbon nanofibers composites for use in high-rate supercapacitor electrodes. Comp Sci Technol 72(13):1524–1529CrossRefGoogle Scholar
  11. 11.
    Vonlanthen D, Lazarev P, See KA, Wudl F, Heeger AJ (2014) A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv Mater 26(30):5095–5100CrossRefPubMedGoogle Scholar
  12. 12.
    Peng C, Hu D, Chen GZ (2011) Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: comment on ‘vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’. Chem Commun 47(14):4105–4107CrossRefGoogle Scholar
  13. 13.
    Li H, Wang J, Chu Q, Wang Z, Zhang F, Wang S (2009) Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. J Power Sources 190(2):578–586CrossRefGoogle Scholar
  14. 14.
    Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40(14):2591–2611CrossRefGoogle Scholar
  15. 15.
    Li Z-F, Zhang H, Liu Q, Sun L, Stanciu L, Xie J (2013) Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl Mater Interfaces 5(7):2685–2691CrossRefPubMedGoogle Scholar
  16. 16.
    Parveen N, Ansari MO, Cho MH (2016) Route to high surface area, mesoporosity of polyaniline–titanium dioxide nanocomposites via one pot synthesis for energy storage applications. Eng Chem Res 55(1):116–124CrossRefGoogle Scholar
  17. 17.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRefPubMedGoogle Scholar
  18. 18.
    Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769PubMedGoogle Scholar
  19. 19.
    Wang H, Liu R, Yang C, Hao Q, Wang X, Gong K, Wu J, Hu Y, Lia Z, Jianga J (2017) Smart and designable graphene–SiO2 nanocomposites with multifunctional applications in silicone elastomers and polyaniline supercapacitors. RSC Adv 7(19):11478–11490CrossRefGoogle Scholar
  20. 20.
    Xie F, Kou C, Yuan Y, Zhu W, Zhu J, Zhu J, Zhu X, Pezzotti G (2017) High-performance supercapacitor based on polyaniline/poly(vinylidene fluoride) composite with KOH. Energy Technol 5(4):588–598CrossRefGoogle Scholar
  21. 21.
    Mondal S, Rana U, Malik S (2017) Reduced graphene oxide/Fe3O4/polyaniline nanostructures as electrode materials for an all-solid-state hybrid supercapacitor. J Phys Chem C 121(14):7573–7583CrossRefGoogle Scholar
  22. 22.
    Wang R, Han M, Zhao Q, Ren Z, Guo X, Xu C, Hu N, Lu L (2017) Hydrothermal synthesis of nanostructured graphene/polyaniline composites as highcapacitance electrode materials for supercapacitors. Sci Rep 7(1):44562CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang S, Gao T, Li Y, Li S, Zhou G (2017) Fabrication of vesicular polyaniline using hard templates and composites with graphene for supercapacitor. J Solid State Electrochem 21(3):705–714CrossRefGoogle Scholar
  24. 24.
    Chu H-J, Lee C-Y, Tai N-H (2016) Three-dimensional porous polyaniline/graphene-coated activated carbon fiber electrodes for supercapacitors. RSC Adv 6(112):111465–111471CrossRefGoogle Scholar
  25. 25.
    Simotwo SK, DelRe C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Interfaces 8(33):21261–21269CrossRefPubMedGoogle Scholar
  26. 26.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  27. 27.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2012) Electrochemical performance of mechanochemically prepared polyaniline doped with lithium salt. Synth Met 162(24):2206–2211CrossRefGoogle Scholar
  28. 28.
    Posudievsky OY, Goncharuk OA, Pokhodenko VD (2010) Mechanochemical preparation of conducting polymers and oligomers. Synth Met 160(1-2):47–51CrossRefGoogle Scholar
  29. 29.
    Posudievsky OY, Goncharuk OA, Pokhodenko VD (2010) Structure–property relationship in mechanochemically prepared polyaniline. Synth Met 160(5-6):462–467CrossRefGoogle Scholar
  30. 30.
    Gribkova OL, Nekrasov AA, Ivanov VF, Kozarenko OA, Posudievsky OY, Vannikov AV, Koshechko VG, Pokhodenko VD (2013) Mechanochemical synthesis of polyaniline in the presence of polymeric sulfonic acids of different structure. Synth Met 180:64–72CrossRefGoogle Scholar
  31. 31.
    Gutiérrez AR, Vázquez RA, Moggio I, Arias E, Coreño O, Maldonado JL, Ramos-Ortíz G, Rodríguez O, Jiménez-Barrera RM (2015) Mechanosynthesis of a phenylenedivinylidenebisquinoline. optical, morphological and electroluminescence properties. J Mol Struct 1086:138–145CrossRefGoogle Scholar
  32. 32.
    Ravnsbæk JB, Swager TM (2014) Mechanochemical synthesis of poly(phenylene vinylenes). ACS Macro Lett 4:305–309CrossRefGoogle Scholar
  33. 33.
    Zhou ZH, Zhang XX, Tian D, Xiong R, Lu CH (2013) Solvent free synthesis of polyaniline with improved molecular weight through solid state mechanochemical milling at ambient temperature. Mater Res Innov 17(2):84–91CrossRefGoogle Scholar
  34. 34.
    Xia H, Wang Q, Li K, Hu G-H (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93(1):378–386CrossRefGoogle Scholar
  35. 35.
    Niu Z, Chen Y, Feng J (2016) Preparation, structure, and property of wood flour incorporated polypropylene composites prepared by a solid-state mechanochemical method. J Appl Polym Sci 133:43108CrossRefGoogle Scholar
  36. 36.
    Wang M, Zhang X, Zhang W, Tian D, Lu C (2013) Thermoplastic polyurethane composites prepared from mechanochemically activated waste cotton fabric and reclaimed polyurethane foam. J Appl Polym Sci 128(6):3555–3563CrossRefGoogle Scholar
  37. 37.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2013) Mechanochemically prepared ternary hybrid cathode material for lithium batteries. Electrochim Acta 109:866–873CrossRefGoogle Scholar
  38. 38.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Effect of host–guest versus core–shell structure on electrochemical characteristics of vanadium oxide/polypyrrole nanocomposites. Electrochim Acta 58:442–448CrossRefGoogle Scholar
  39. 39.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196(6):3331–3341CrossRefGoogle Scholar
  40. 40.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2015) Effect of the composition and post-synthesis heat treatment on the electrochemical characteristics of polypyrrole/V2O5 nanocomposites prepared by a mechanochemical method. Theor Exp Chem 51(3):163–169CrossRefGoogle Scholar
  41. 41.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2015) Advanced electrochemical performance of hybrid nanocomposites based on LiFePO4 and lithium salt doped polyaniline. J Solid State Electrochem 19(9):2733–2740CrossRefGoogle Scholar
  42. 42.
    Kozarenko OA, Khazieieva OA, Dyadyun VS, Posudievsky OY, Koshechko VG, Pokhodenko VD (2015) Mechanochemical preparation of a MoS2/polyaniline nanocomposite with high electrochemical capacity. Theor Exp Chem 51(5):293–300CrossRefGoogle Scholar
  43. 43.
    Zhao W, Fang M, Wu F, Wu H, Wang L, Chen G (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20(28):5817–5819CrossRefGoogle Scholar
  44. 44.
    Posudievsky OY, Khazieieva OA, Cherepanov VV, Koshechko VG, Pokhodenko VD (2013) High yield of graphene by dispersant–free liquid exfoliation of mechanochemically delaminated graphite. J Nanopart Res 15(11):2046–2055CrossRefGoogle Scholar
  45. 45.
    Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2014) Mechanochemical delamination of graphite in the presence of various inorganic salts and formation of graphene by its subsequent liquid exfoliation. Theor Exp Chem 50(2):103–109CrossRefGoogle Scholar
  46. 46.
    Posudievsky OY, Khazieieva OA, Koshechko VG, Pokhodenko VD (2012) Preparation of graphene oxide by solvent–free mechanochemical oxidation of graphite. J Mater Chem 22(25):12465–12467CrossRefGoogle Scholar
  47. 47.
    Posudievsky OY, Kozarenko OA, Khazieieva OA, Koshechko VG, Pokhodenko VD (2013) Ultrasound–free preparation of graphene oxide from mechanochemically oxidized graphite. J Mater Chem A 1(22):6658–6663CrossRefGoogle Scholar
  48. 48.
    León V, Rodriguez AM, Prieto P, Prato M, Vázquez E (2014) Exfoliation of graphite with triazine derivatives under ball-milling conditions: preparation of few-layer graphene via selective noncovalent interactions. ACS Nano 8(1):563–571CrossRefPubMedGoogle Scholar
  49. 49.
    Huang JY, Yasuda H, Mori H (1999) Highly curved carbon nanostructures produced by ball-milling. Chem Phys Lett 303(1-2):130–134CrossRefGoogle Scholar
  50. 50.
    Ong TS, Yang H (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38(15):2077–2085CrossRefGoogle Scholar
  51. 51.
    Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24(3):779–789CrossRefGoogle Scholar
  52. 52.
    Hirsch PB, Howie А, Nicholson RB, Pashley DW, Whelan МJ (1968) Electron spectroscopy of thin crystals. Mir, Мoscow (in Russian)Google Scholar
  53. 53.
    Luo J, Zhong W, Zou Y, Xiong C, Yang W (2016) Preparation of morphology-controllable polyaniline and polyaniline/graphene hydrogels for high performance binder-free supercapacitor electrodes. J Power Sources 319:73–81CrossRefGoogle Scholar
  54. 54.
    Basko DM, Piscanec S, Ferrari AC (2009) Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys Rev B 80(16):165413–165423CrossRefGoogle Scholar
  55. 55.
    Das A, Pisana S, Chakraborty B, Piscanec S, Saha SK, Waghmare UV, Novoselov KS, Krishnamurthy HR, Geim AK, Ferrari AC, Sood AK (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3(4):210–215CrossRefPubMedGoogle Scholar
  56. 56.
    Bernard M-C, Hugot-Le Goff A (1997) Raman spectroscopy for the study of polyaniline. Synth Met 85:1145–l146CrossRefGoogle Scholar
  57. 57.
    Sun H, She P, Xu K, Shang Y, Yin S, Liu Z (2015) A self-standing nanocomposite foam of polyaniline @reduced graphene oxide for flexible super-capacitors. Synth Met 209:68–73CrossRefGoogle Scholar
  58. 58.
    Pud AA (1994) Stability and degradation of conducting polymers in electrochemical systems. Synth Met 66(1):1–18CrossRefGoogle Scholar
  59. 59.
    Huang W-S, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1(82):2385–2400CrossRefGoogle Scholar
  60. 60.
    Balducci A, Belanger D, Brousse T, Long JW, Sugimoto WA (2017) Guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J Electrochem Soc 164(7):A1487–A1488CrossRefGoogle Scholar
  61. 61.
    Gawli Y, Banerjee A, Dhakras D, Deo M, Bulani D, Wadgaonkar P, Shelke M, Ogale S (2016) 3D polyaniline architecture by concurrent inorganic and organic acid doping for superior and robust high rate supercapacitor performance. Sci Rep 6(1):21002CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhang Z, Wang G, Li Y, Zhang X, Qiao N, Wang J, Zhou J, Liu Z, Hao Z (2014) A new type of ordered mesoporous carbon/polyaniline composites prepared by a two-step nanocasting method for high performance supercapacitor applications. J Mater Chem A 2(39):16715–16722CrossRefGoogle Scholar
  63. 63.
    Chang C-M, Hu Z-H, Lee T-Y, Huang Y-A, Ji W-F, Liu W-R, Yeh J-M, Wei Y (2016) Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors. J Mater Chem A 4(23):9133–9145CrossRefGoogle Scholar
  64. 64.
    Ghenaatiana HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159(17-18):1717–1722CrossRefGoogle Scholar
  65. 65.
    Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y (2014) Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl Mater Interfaces 6(18):16312–16319CrossRefPubMedGoogle Scholar
  66. 66.
    Wang L, Ye Y, Lu X, Wen Z, Li Z, Hou H, Song Y (2013) Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. Sci Rep 3(1):3568CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wu J, Zhang Q, Zhou A, Huang Z, Bai H, Li L (2016) Phase-separated polyaniline/graphene composite electrodes for high-rate electrochemical supercapacitors. Adv Mater 28(46):10211–10216CrossRefPubMedGoogle Scholar
  68. 68.
    Li D, Li Y, Feng Y, Hu W, Feng W (2015) Hierarchical graphene oxide/polyaniline nanocomposites prepared by interfacial electrochemical polymerization for flexible solid-state supercapacitors. J Mater Chem A 3(5):2135–2143CrossRefGoogle Scholar
  69. 69.
    Liu H, Zhang W, Song H, Chen X, Zhou J, Ma Z (2014) Tremella-like graphene/polyaniline spherical electrode material for supercapacitors. Electrochim Acta 146:511–517CrossRefGoogle Scholar
  70. 70.
    Huang F, Chen D (2012) Towards the upper bound of electrochemical performance of ACNT@polyaniline arrays as supercapacitors. Energy Environ Sci 5(2):5833–5841CrossRefGoogle Scholar
  71. 71.
    Ghenaatian HR, Mousavi MF, Kazemi SH, Shamsipur M (2009) Electrochemical investigations of self-doped polyaniline nanofibers as a new electroactive material for high performance redox supercapacitor. Synth Met 159(17-18):1717–1722CrossRefGoogle Scholar
  72. 72.
    Arjomandi J, Lee JY, Movafagh R, Moghanni-Bavil-Olyaei H, Parvin MH (2018) Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J Electroanal Chem 819:100–108CrossRefGoogle Scholar
  73. 73.
    Male U, Srinivasan P, Singu BS (2015) Incorporation of polyaniline nanofibres on graphene oxide by interfacial polymerization pathway for supercapacitor. Int Nano Lett 5(4):231–240CrossRefGoogle Scholar
  74. 74.
    Boddula R, Bolagam R, Srinivasan P (2018) Incorporation of graphene-Mn3O4 core into polyaniline shell: supercapacitor electrode material. Ionics 24(5):1467–1474CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of UkraineKyivUkraine
  2. 2.National Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations