Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3383–3391 | Cite as

Physical properties of silicene electrodes for Li-, Na-, Mg-, and K-ion batteries

  • Alexander Y. GalashevEmail author
  • Alexey S. Vorob’ev
Original Paper


The transition from lithium-ion batteries to sodium- and potassium-ion batteries will increase the power of electrochemical current sources and the rate of their charging. On the basis of the first principles of density functional theory and ab initio molecular dynamics simulations, the interaction of Li, Na, Mg, and K atoms with an autonomous silicene has been studied. The adsorption energies and the Si–Me (Me = Li, Na, Mg, K) bond lengths for different locations of the adsorbed metal atoms are calculated. The favorable adsorption site of Me on silicene nanosheet is identified and reported. In the approximation of the generalized gradient, the band structure of the “silicene/Me” systems is calculated. The metallic state of an autonomous metallized silicene can arise for various cases of adsorption of an alkali metal and when the ratio between the Mg and Si atoms in the system is 1:1. Metallization of the semiconductor does not occur when the number of adsorbed Mg atoms is less than the number of Si atoms.


Density functional theory Lithium Potassium Silicene Sodium Magnesium 


Funding information

The study was performed by the grant from the Russian Science Foundation (Project No. 16-13-00061).


  1. 1.
    Xia X, Dahn JR (2012) NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem Solid-State Lett 15(1):A1–A4CrossRefGoogle Scholar
  2. 2.
    Kim J, Seo D-H, Kim H, Park I, Yoo J-K, Jung S-K, Park Y-U, Coddard WA III, Kang K (2015) Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries. Energy Environ Sci 8:540–545CrossRefGoogle Scholar
  3. 3.
    Andrews JL, Mukherjee A, Yoo HD, Parija A, Marley PM, Fakra S, Prendergast D, Cabana J, Klie RF, Banerjee S (2018) Reversible Mg-ion insertion in a metastable one-dimensional polymorph of V2O5. Chem 4(3):564–585CrossRefGoogle Scholar
  4. 4.
    Jian Z, Luo W, Ji X (2015) Carbon electrodes for K-ion batteries. J Am Chem Soc 137:11566–11569CrossRefPubMedGoogle Scholar
  5. 5.
    Zheng J, Deng W, Hu Z, Zhuo Z, Liu F, Chen H, Lin Y, Yang W, Amine K, Li R, Lu J, Pan F (2018) Asymmetric K/Li-ion battery based on intercalation selectivity. ACS Energy Lett 3(1):65–71CrossRefGoogle Scholar
  6. 6.
    Galashev AE, Zaikov Yu P (2015) Computer simulation of Li+ ion interaction with a graphene sheet. Rus J Phys Chem A 89:2243–2247CrossRefGoogle Scholar
  7. 7.
    Galashev AE, Zaikov Yu P, Vladykin RG (2016) Effect of electric field on lithium ion in silicene channel. Computer experiment. Russ J Electrochem 52(10):966–974CrossRefGoogle Scholar
  8. 8.
    Galashev AE, Ivanichkina KA, Vorobiev AS, Rakhmanova OR (2017) Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: a computer experiment. Phys Solid State 59(6):1242–1252CrossRefGoogle Scholar
  9. 9.
    Galashev AE, Ivanichkina KA (2017) Computational study of the properties of silicon thin films on graphite. Rus J Phys Chem A 91(12):2448–2452CrossRefGoogle Scholar
  10. 10.
    Chen L, Liu C-C, Feng BJ, He X, Cheng P, Ding ZJ, Meng S, Yao YG, Wu KH (2012) Evidence for Dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett 109:056804CrossRefPubMedGoogle Scholar
  11. 11.
    Liu CC, Feng W, Yao YG (2011) Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett 107:076802CrossRefPubMedGoogle Scholar
  12. 12.
    Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227–231CrossRefPubMedGoogle Scholar
  13. 13.
    Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012) Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett 108:155501CrossRefPubMedGoogle Scholar
  14. 14.
    Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer WA, Gao H-J (2013) Buckled silicene formation on Ir(111). Nano Lett 13:685–690CrossRefPubMedGoogle Scholar
  15. 15.
    Ordejon P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:10441–10444CrossRefGoogle Scholar
  16. 16.
    Sanchez-Portal D, Ordejon P, Artacho E, Soler JM (1997) Density functional method for very large systems with LCAO basis sets. Int J Quantum Chem 65:453–461CrossRefGoogle Scholar
  17. 17.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRefGoogle Scholar
  18. 18.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138CrossRefGoogle Scholar
  19. 19.
    Filippi C, Singh DJ, Umrigar CJ (1994) All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. Phys Rev B 50:14947–14951CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefPubMedGoogle Scholar
  21. 21.
    Kawahara K, Shirasawa T, Arafune R, Lin C-L, Takahashi T, Kawai M, Takegi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf Sci 623(3):25–28CrossRefGoogle Scholar
  22. 22.
    Cahangirov S, Ozcelik VO, Xian L, Avila J, Cho S, Asensio MC, Ciraci S, Rubio A (2014) Atomic structure of the √3 × √3 phase of silicene on Ag(111). Phys Rev B 90:035448CrossRefGoogle Scholar
  23. 23.
    Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519CrossRefGoogle Scholar
  24. 24.
    Asahi R, Mannstadt W, Freeman AJ (1999) Optical properties and electronic structures of semiconductors with screened-exchange LDA. Phys Rev B Condens Matter 59:7486–7492CrossRefGoogle Scholar
  25. 25.
    Seidl A, Görling A, Vogl P, Majewski JA, Levy M (1996) Generalized Kohn–Sham schemes and the band-gap problem. Phys Rev B Condens Matter 53:3764–3774CrossRefPubMedGoogle Scholar
  26. 26.
    Leng X, Jin F, Wei M, Ma Y (2016) GW method and Bethe–Salpeter equation for calculating electronic excitations. Comp Mol Sci 6(5):532–550CrossRefGoogle Scholar
  27. 27.
    Yan JA, Yang L, Chou MY (2007) Size and orientation dependence in the electronic properties of silicon nanowires. Phys Rev B: Condens Mater 76:115319CrossRefGoogle Scholar
  28. 28.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138CrossRefGoogle Scholar
  29. 29.
    Mortazavi B, Dianat A, Cuniberti G, Rabczuk T (2016) Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochim Acta 213:865–870CrossRefGoogle Scholar
  30. 30.
    Tritsaris GA, Kaxiras E, Meng S, Wang E (2013) Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Lett 13:2258–2263CrossRefPubMedGoogle Scholar
  31. 31.
    Rowe JE (1974) Photoemission measurement of surface states for annealed silicon. Phys Lett A 46(6):400–402CrossRefGoogle Scholar
  32. 32.
    Rowe JE, Ibach H (1974) Surface and bulk contributions to ultraviolet photoemission spectra of silicon. Phys Rev Lett 32(8):421–424CrossRefGoogle Scholar
  33. 33.
    Tim HO, Farajian AA (2012) Stability of lithiated silicene from first principles. J Phys Chem C 116:22916–22920CrossRefGoogle Scholar
  34. 34.
    Galashev AE, Rakhmanova OR, Zaikov Yu P (2016) Defect silicene and graphene as applied to the anode of lithium-ion batteries: numerical experiment. Phys Solid State 58(9):1850–1857CrossRefGoogle Scholar
  35. 35.
    Galashev AY, Ivanichkina KA (2017) Nanoscale simulation of the lithium ion interaction with defective silicone. Phys Lett A 381:3079–3083CrossRefGoogle Scholar
  36. 36.
    Rakhmanova OR, Galashev AE (2017) Motion of a lithium ion over a graphene–silicene channel: a computer model. Rus J Phys Chem A 91(5):921–925CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations