Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3363–3373 | Cite as

Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery

  • Jinyan Tan
  • Lingyi Kong
  • Zhiming QiuEmail author
  • Yurong YanEmail author
Original Paper


To meet the booming demands for lithium-ion battery (LIB), it is practically significant to promote its electrochemical performance and safety. In our work, a novel kind of flexible membrane as separator for LIB is prepared via phase inversion method with soluble polyimide (SPI) containing trifluoromethyl substituent, which is synthesized from 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) and 4,4′-oxydiphthalic anhydride (ODPA). The SPI separator shows 5% weight loss temperature (Td5%) of 535 °C and maintains intrinsic dimension even after heating at 200 °C. The SPI membrane depicts a sponge-like structure with abundant interconnected pores and delivers a dominant porosity (67%). The SPI membrane displays desired electrolyte wettability, validated by contact angle tests (16.2° and 46.8° for SPI membrane and PE separator, respectively) and electrolyte uptake tests (420 and 132% for SPI membrane and PE separator, respectively). The LIB with SPI membrane as separator exhibits nice ionic conductivity (0.92 mS cm−1) than that with PE separator (0.30 mS cm−1), and therefore affords better electrochemical performance, such as cycling stability and rate capability.


Separator Polyimide Phase inversion Lithium-ion battery 



This work was financially supported by the National Natural Science Foundation of China (51003033) and the Fundamental Research Funds for the Central Universities, SCUT (Grant Number 2015ZM100).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62CrossRefPubMedGoogle Scholar
  2. 2.
    Vlad A, Singh N, Galande C, Ajayan PM (2015) Design considerations for unconventional electrochemical energy storage architectures. Adv Energy Mater 5(19):1402115CrossRefGoogle Scholar
  3. 3.
    Sasaki T, Ukyo Y, Novák P (2013) Memory effect in a lithium-ion battery. Nat Mater 12(6):569–575CrossRefPubMedGoogle Scholar
  4. 4.
    Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK (2012) The current move of lithium ion batteries towards the next phase. Adv Energy Mater 2(7):860–872CrossRefGoogle Scholar
  5. 5.
    Suo L, Borodin O, Gao T et al (2015) “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263):938–943CrossRefPubMedGoogle Scholar
  6. 6.
    Palacín MR, de Guibert A (2016) Why do batteries fail? Science 351(6273):1253292CrossRefPubMedGoogle Scholar
  7. 7.
    Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7(12):3857–3886CrossRefGoogle Scholar
  8. 8.
    Venugopal G, Moore J, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41CrossRefGoogle Scholar
  9. 9.
    Huang X (2011) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15(4):649–662CrossRefGoogle Scholar
  10. 10.
    Ryou MH, Lee YM, Park JK, Choi JW (2011) Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries. Adv Mater 23(27):3066–3070CrossRefPubMedGoogle Scholar
  11. 11.
    Smith SA, Park JH, Williams BP, Joo YL (2017) Polymer/ceramic co-continuous nanofiber membranes via room-curable organopolysilazane for improved lithium-ion battery performance. J Mater Sci 52(7):3657–3669CrossRefGoogle Scholar
  12. 12.
    Ding M (2007) Isomeric polyimides. Prog Polym Sci 32(6):623–668CrossRefGoogle Scholar
  13. 13.
    Ghosh MK, Mittal KL (1996) Polyimides: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  14. 14.
    Feger C, Khojasteh MM, McGrath JE (1989) Polyimides: chemistry and characterization. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Liang X, Yang Y, Jin X, Huang Z, Kang F (2015) The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J Membr Sci 493:1–7CrossRefGoogle Scholar
  16. 16.
    Chen S, Ye W, Hou H (2014) Electrospun fibrous membranes as separators of lithium-ion batteries. In: Ding B, Yu J (eds) Electrospun nanofibers for energy and environmental applications. Springer, New York, pp 91–110CrossRefGoogle Scholar
  17. 17.
    Miao YE, Zhu GN, Hou H, Xia YY, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86CrossRefGoogle Scholar
  18. 18.
    Cao L, An P, Xu Z, Huang J (2016) Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem 767:34–39CrossRefGoogle Scholar
  19. 19.
    Kong L, Liu B, Ding J, Yan X, Tian G, Qi S, Wu D (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250CrossRefGoogle Scholar
  20. 20.
    Wang Y, Wang S, Fang J, Ding LX, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRefGoogle Scholar
  21. 21.
    Ding J, Kong Y, Li P, Yang J (2012) Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery. J Electrochem Soc 159(9):A1474–A1480CrossRefGoogle Scholar
  22. 22.
    Cho JH, Park JH, Kim JH, Lee SY (2011) Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate). J Mater Chem 21(22):8192–8198CrossRefGoogle Scholar
  23. 23.
    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462CrossRefPubMedGoogle Scholar
  24. 24.
    Huang X, Hitt J (2013) Lithium ion battery separators: development and performance characterization of a composite membrane. J Membr Sci 425:163–168CrossRefGoogle Scholar
  25. 25.
    Kong L, Yan Y, Qiu Z, Zhou Z, Hu J (2018) Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J Membr Sci 549:321–331CrossRefGoogle Scholar
  26. 26.
    Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30CrossRefGoogle Scholar
  27. 27.
    van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J (1996) Phase separation processes in polymer solutions in relation to membrane formation. J Membr Sci 117(1-2):1–31CrossRefGoogle Scholar
  28. 28.
    Guillen GR, Pan Y, Li M, Hoek EMV (2011) Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind Eng Chem Res 50(7):3798–3817CrossRefGoogle Scholar
  29. 29.
    Amici J, Francia C, Zeng J, Bodoardo S, Penazzi N (2016) Protective PVDF-HFP-based membranes for air de-hydration at the cathode of the rechargeable li-air cell. J Appl Electrochem 46(5):617–626CrossRefGoogle Scholar
  30. 30.
    Kuo CY, Lin HN, Tsai HA, Wang DM, Lai JY (2008) Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination 233(1-3):40–47CrossRefGoogle Scholar
  31. 31.
    Liu F, Hashim NA, Liu Y, Moghareh Abed MR, Li K (2011) Progress in the production and modification of PVDF membranes. J Membr Sci 375(1-2):1–27CrossRefGoogle Scholar
  32. 32.
    Amici J, Alidoost M, Francia C et al (2016) O2 selective membranes based on a dextrin-nanosponge (NS) in a PVDF-HFP polymer matrix for li–air cells. Chem Commum 52(94):13683–13686CrossRefGoogle Scholar
  33. 33.
    Vandezande P, Gevers LEM, Vankelecom IFJ (2008) Solvent resistant nanofiltration: separating on a molecular level. Chem Soc Rev 37(2):365–405CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang H, Lin CE, Zhou MY, John AE, Zhu BK (2016) High thermal resistance polyimide separators prepared via soluble precusor and non-solvent induced phase separation process for lithium ion batteries. Electrochim Acta 187:125–133CrossRefGoogle Scholar
  35. 35.
    Lin D, Zhuo D, Liu Y, Cui Y (2016) All-integrated bifunctional separator for li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc 138(34):11044–11050CrossRefPubMedGoogle Scholar
  36. 36.
    Huang X (2012) A lithium-ion battery separator prepared using a phase inversion process. J Power Sources 216:216–221CrossRefGoogle Scholar
  37. 37.
    l'Abee R, Darosa F, Armstrong MJ, Hantel MM, Mourzagh D (2017) High temperature stable li-ion battery separators based on polyetherimides with improved electrolyte compatibility. J Power Sources 345:202–211CrossRefGoogle Scholar
  38. 38.
    Shi J, Xia Y, Yuan Z, Hu H, Li X, Zhang H, Liu Z (2015) Porous membrane with high curvature, three-dimensional heat-resistance skeleton: a new and practical separator candidate for high safety lithium ion battery. Sci Rep 5:8255CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang H, Wang T, Yang S, Fan L (2013) Preparation of thermal stable porous polyimide membranes by phase inversion process for lithium-ion battery. Polymer 54(23):6339–6348CrossRefGoogle Scholar
  40. 40.
    Xie K, Zhang SY, Liu JG, He MH, Yang SY (2001) Synthesis and characterization of soluble fluorine-containing polyimides based on 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene. J Polym Sci A Polym Chem 39(15):2581–2590CrossRefGoogle Scholar
  41. 41.
    Qiu Z, Wang J, Zhang Q, Zhang S, Ding M, Gao L (2006) Synthesis and properties of soluble polyimides based on isomeric ditrifluoromethyl substituted 1,4-bis(4-aminophenoxy)benzene. Polymer 47(26):8444–8452CrossRefGoogle Scholar
  42. 42.
    Amici J, Alidoost M, Caldera F, Versaci D, Zubair U, Trotta F, Francia C, Bodoardo S (2018) PEEK-WC/nanosponge membranes for lithium-anode protection in rechargeable li−O2 batteries. ChemElectroChem 5:1–8CrossRefGoogle Scholar
  43. 43.
    Banerjee S, Madhra MK, Salunke AK, Maier G (2002) Synthesis and properties of fluorinated polyimides. 1. Derived from novel 4,4″-bis(aminophenoxy)-3,3″-trifluoromethyl terphenyl. J Polym Sci A Polym Chem 40(8):1016–1027CrossRefGoogle Scholar
  44. 44.
    Dhara MG, Banerjee S (2010) Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 35(8):1022–1077CrossRefGoogle Scholar
  45. 45.
    Yin D, Li Y, Yang H, Yang S, Fan L, Liu J (2005) Synthesis and characterization of novel polyimides derived from 1,1-bis[4-(4′-aminophenoxy)phenyl]-1-[3″,5″-bis(trifluoromethyl)phenyl]- 2,2,2-trifluoroethane. Polymer 46(9):3119–3127CrossRefGoogle Scholar
  46. 46.
    Zhai L, Yang S, Fan L (2012) Preparation and characterization of highly transparent and colorless semi-aromatic polyimide films derived from alicyclic dianhydride and aromatic diamines. Polymer 53(16):3529–3539CrossRefGoogle Scholar
  47. 47.
    Liaw DJ, Chang FC (2004) Highly organosoluble and flexible polyimides with color lightness and transparency based on 2,2-bis[4-(2-trifluoromethyl-4-aminophenoxy)-3,5-dimethylphenyl]propane. J Polym Sci A Polym Chem 42(22):5766–5774CrossRefGoogle Scholar
  48. 48.
    Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37(7):907–974CrossRefGoogle Scholar
  49. 49.
    Chuang KC, Kinder JD, Hull DL, McConville DB, Youngs WJ (1997) Rigid-rod polyimides based on noncoplanar 4,4′-biphenyldiamines: a review of polymer properties vs configuration of diamines. Macromolecules 30(23):7183–7190CrossRefGoogle Scholar
  50. 50.
    Li D, Chung TS, Ren J, Wang R (2004) Thickness dependence of macrovoid evolution in wet phase-inversion asymmetric membranes. Ind Eng Chem Res 43(6):1553–1556CrossRefGoogle Scholar
  51. 51.
    Matsuyama H, Nakagawa K, Maki T, Teramoto M (2003) Studies on phase separation rate in porous polyimide membrane formation by immersion precipitation. J Appl Polym Sci 90(1):292–296CrossRefGoogle Scholar
  52. 52.
    Vogrin N, Stropnik Č, Musil V, Brumen M (2002) The wet phase separation: the effect of cast solution thickness on the appearance of macrovoids in the membrane forming ternary cellulose acetate/acetone/water system. J Membr Sci 207(1):139–141CrossRefGoogle Scholar
  53. 53.
    Lin CE, Zhang H, Song YZ, Zhang Y, Yuan JJ, Zhu BK (2018) Carboxylated polyimide separator with excellent lithium ion transport properties for a high-power density lithium-ion battery. J Mater Chem A 6(3):991–998CrossRefGoogle Scholar
  54. 54.
    Zhang SS (2007) A review on the separators of liquid electrolyte li-ion batteries. J Power Sources 164(1):351–364CrossRefGoogle Scholar
  55. 55.
    Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M (2007) Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem Solid-State Lett 10(7):A159–A162CrossRefGoogle Scholar
  56. 56.
    Gao K, Hu X, Yi T, Dai C (2006) PE-g-MMA polymer electrolyte membrane for lithium polymer battery. Electrochim Acta 52(2):443–449CrossRefGoogle Scholar
  57. 57.
    Li MX, Wang XW, Yang YQ, Chang Z, Wu YP, Holze R (2015) A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. J Membr Sci 476:112–118CrossRefGoogle Scholar
  58. 58.
    Li H, Wu D, Wu J, Dong LY, Zhu YJ, Hu X (2017) Flexible, high-wettability and fire-resistant separators based on hydroxyapatite nanowires for advanced lithium-ion batteries. Adv Mater 29(44):1703548CrossRefGoogle Scholar
  59. 59.
    Lee J, Lee CL, Park K, Kim ID (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217CrossRefGoogle Scholar
  60. 60.
    Muraliganth T, Manthiram A (2010) Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4 (M = Fe, Mn, co, and mg) solid solution cathodes. J Phys Chem C 114(36):15530–15540CrossRefGoogle Scholar
  61. 61.
    Kim JH, Woo SC, Park MS, Kim KJ, Yim T, Kim JS, Kim YJ (2013) Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage. J Power Sources 229:190–197CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations