Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3527–3533 | Cite as

Selective determination of L-dopa in the presence of ascorbic acid and uric acid using a 3D graphene foam

  • Hong Yan Yue
  • Hong Zhang
  • Shuo Huang
  • Xin Gao
  • Jing Chang
  • Xuan Yu Lin
  • Long Hui Yao
  • Li Ping Wang
  • Er Jun Guo
Original Paper
  • 44 Downloads

Abstract

Three-dimensional interconnected network graphene foam (GF) was synthesized by chemical vapor deposition. The GF was transferred onto indium tin oxide glass, acting as an electrode for the selective determination of L-dopa in the presence of ascorbic and uric acid. Using differential pulse voltammetry (DPV) method, the oxidation peak current is well linear with L-dopa concentration in the range of 0.05–1 μM with a sensitivity of 2.64 μA μM−1 and in the range of 1–40 μM with a sensitivity of 1.82 μA μM−1. The detection limit of this electrode for L-dopa is about 20 nM. The proposed electrode can also effectively avoid the interference of ascorbic acid and uric acid, making the proposed sensor suitable for the accurate determination of L-dopa in human urine fluids. This electrode will have a wide range of potential application prospect in electrochemical detection.

Keywords

L-dopa Nickel foam Graphene foam Biosensors 

Notes

Funding information

This work is supported by the National Natural Science Foundation of China (51201052), Science Funds for the Young Innovative Talents of HUST (201306) and Postdoctoral Initial Founding of Heilongjiang Province (LBH-Q1260, LBH-Q14117).

References

  1. 1.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909CrossRefPubMedGoogle Scholar
  2. 2.
    Khor SP, Hsu A (2007) The pharmacokinetics and pharmacodynamics of levodopa in the treatment of Parkinson’s disease. Curr Clin Pharmacol 2(3):234–243CrossRefPubMedGoogle Scholar
  3. 3.
    Hawkins RA, Mokashi A, Simpson IA (2005) An active transport system in the blood–brain barrier may reduce levodopa availability. Exp Neurol 195(1):267–271CrossRefPubMedGoogle Scholar
  4. 4.
    Karimi M, Carl JL, Loftin S, Perlmutter JS (2006) Modified high-performance liquid chromatography with electrochemical detection method for plasma measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-dihydroxyphenyl acetic acid. J Chromatogr B 836(1-2):120–123CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Gao SY (2014) Determination of picogram levels of levodopa in pharmaceutical preparations and biofluids by flow-injection chemiluminescence. Adv Mater Res 884:566–569CrossRefGoogle Scholar
  6. 6.
    Coello J, Maspoch S, Villegas N (2000) Simultaneous kinetic-spectrophotometric determination of levodopa and benserazide by bi- and three-way partial least squares calibration. Talanta 53(3):627–637CrossRefPubMedGoogle Scholar
  7. 7.
    Wang J, Zhou Y, Liang J, He PG, Fang YZ (2005) Determination of levodopa and benserazide hydrochloride in pharmaceutical formulations by CZE with amperometric detection. Chromatographia 61:265–270CrossRefGoogle Scholar
  8. 8.
    Venton BJ, Wightman RM (2003) Psychoanalytical electrochemistry: dopamine and behavior. Anal Chem 75:414 A–421 ACrossRefGoogle Scholar
  9. 9.
    Yi SY, Lee JH, Hong HG (2014) A selective determination of levodopa in the presence of ascorbic acid and uric acid using a glassy carbon electrode modified with reduced graphene oxide. J Appl Electrochem 44(5):589–597CrossRefGoogle Scholar
  10. 10.
    Sivanesan A, John SA (2007) Determination of L-dopa using electropolymerized 3,3′,3″,3″′ -tetraaminophthalocyanatonickel(II) film on glassy carbon electrode. Biosens Bioelectron 23(5):708–713CrossRefPubMedGoogle Scholar
  11. 11.
    Teixeira MF, Bergamini MF, Marques CM, Bocchi N (2004) Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite. Talanta 63(4):1083–1088CrossRefPubMedGoogle Scholar
  12. 12.
    Shahrokhian S, Asadian E (2009) Electrochemical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J Electroanal Chem 636(1-2):40–46CrossRefGoogle Scholar
  13. 13.
    Babaei A, Sohrabi M, Taheri AR (2013) Highly sensitive simultaneous determination of L-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes. J Electroanal Chem 698:45–51CrossRefGoogle Scholar
  14. 14.
    Chen Y, Huang Y, Guo D, Chen C, Wang Q, Fu Y (2014) A chiral sensor for recognition of DOPA enantiomers based on immobilization of β-cyclodextrin onto the carbon nanotube-ionic liquid nanocomposite. J Solid State Electrochem 18(12):3463–3469CrossRefGoogle Scholar
  15. 15.
    Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200CrossRefPubMedGoogle Scholar
  16. 16.
    Pumera M (2011) Graphene in biosensing. Mater Today 14(7-8):308–315CrossRefGoogle Scholar
  17. 17.
    Gao HC, Xiao F, Ching CB, Duan HW (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3(8):3049–3057CrossRefPubMedGoogle Scholar
  18. 18.
    Venkatesan BM, Estrada D, Banerjee S, Jin X, Dorgan VE, Bae MH, Aluru NR, Pop E, Bashir R (2011) Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6:441–450CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Brownson DA, Gomez-Mingot M, Banks CE (2011) CVD graphene electrochemistry: biologically relevant molecules. Phys Chem Chem Phys 13(45):20284–20288CrossRefPubMedGoogle Scholar
  20. 20.
    Chen ZP, Ren WC, Gao LB, Liu BL, Pei SF, Cheng HM (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428CrossRefPubMedGoogle Scholar
  21. 21.
    Arvand M, Ghodsi N (2014) Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of L-DOPA in human cerebrospinal fluid. Sensors Actuators B 204:393–401CrossRefGoogle Scholar
  22. 22.
    Rueda M, Aldaz A, Sanchez-Burgos F (1978) Oxidation of L -ascorbic acid on a gold electrode. Electrochim Acta 23(5):419–424CrossRefGoogle Scholar
  23. 23.
    Arvand M, Ghodsi N (2013) A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of L-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17(3):775–784CrossRefGoogle Scholar
  24. 24.
    Dryhurst G (1972) Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode. J Electrochem Soc 119(12):1659–1664CrossRefGoogle Scholar
  25. 25.
    Ball EG (1937) Studies on oxidation-reduction XXIII. ascorbic acid. J Biol Chem 118:219–239Google Scholar
  26. 26.
    Dong X, Wang X, Wang L, Hao S, Hua Z, Wei H, Peng C (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4(6):3129–3133CrossRefPubMedGoogle Scholar
  27. 27.
    Yoon SM, Choi WM, Baik H, Shin HJ, Song I, Kwon MS, Bae JJ, Kim H, Lee YH, Choi JY (2012) Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6(8):6803–6811CrossRefPubMedGoogle Scholar
  28. 28.
    Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P (2012) 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl Mater Interfaces 4(6):3129–3133CrossRefPubMedGoogle Scholar
  29. 29.
    Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26(2):542–548CrossRefPubMedGoogle Scholar
  30. 30.
    Babaei A, Babazadeh M (2011) A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanal 23(7):1726–1735CrossRefGoogle Scholar
  31. 31.
    Hadi M, Rouhollahi A (2012) Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Anal Chim Acta 721:55–60CrossRefPubMedGoogle Scholar
  32. 32.
    Akhgar MR, Salari M, Zamani H (2010) Simultaneous determination of levodopa, NADH, and tryptophan using carbon paste electrode modified with carbon nanotubes and ferrocenedicarboxylic acid. J Solid State Electrochem 15:845–853CrossRefGoogle Scholar
  33. 33.
    Chandra U, Kumara Swamy BE, Gilbert O, Sherigara BS (2010) Voltammetric resolution of dopamine in the presence of ascorbic acid and uric acid at poly (calmagite) film coated carbon paste electrode. Electrochim Acta 55:7166–7174CrossRefGoogle Scholar
  34. 34.
    Mazloum-Ardakani M, Rajabi H, Beitollahi H, Mirjalili BF, Akbari A, Taghavinia N (2007) Voltammetric determination of dopamine at the surface of TiO2 nanoparticles modified carbon paste electrode. Int J Electrochem Sci 5:147–157Google Scholar
  35. 35.
    Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids Surf B: Biointerfaces 62(2):199–205CrossRefPubMedGoogle Scholar
  36. 36.
    Prabhu P, Suresh Babu R, Sriman Narayanan S (2011) Amperometric determination of L-dopa by nickel hexacyanoferrate film modified gold nanoparticle graphite composite electrode. Sensors Actuators B 156(2):606–614CrossRefGoogle Scholar
  37. 37.
    Yan X, Pan D, Wang H, Bo XJ, Guo LP (2011) Electrochemical determination of L-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode. J Electroanal Chem 663(1):36–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong Yan Yue
    • 1
  • Hong Zhang
    • 1
  • Shuo Huang
    • 1
    • 2
  • Xin Gao
    • 1
  • Jing Chang
    • 1
  • Xuan Yu Lin
    • 1
  • Long Hui Yao
    • 1
  • Li Ping Wang
    • 1
  • Er Jun Guo
    • 1
  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations