Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3375–3382 | Cite as

From nickel oxalate dihydrate microcubes to NiS2 nanocubes for high performance supercapacitors

  • Raziyeh Akbarzadeh
  • Hossein DehghaniEmail author
Original Paper


In this study, NiS2 nanocubes were successfully synthesized by a novel facile solvothermal method using NiC2O4·2H2O microstructures and used as an electrode for high-performance supercapacitors. The electrochemical properties of the prepared NiS2 electrode were studied using galvanostatic charge–discharge analysis, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) studies. Its maximum specific capacitance was 2077 F g−1 at a constant current density of about 0.65 A g−1. Further, the EIS results confirmed the pseudocapacitive nature of the NiS2 electrode. The experimental results suggested that the NiS2 electro-active material demonstrates excellent electrochemical performance with high specific capacitance, low resistance, and excellent cycling stability.


NiS2 Nanocubes NiC2O4·2H2Solvothermal Electrochemical properties Supercapacitors 


Funding information

This work was supported by the University of Kashan by Grant No. 159183/37.


  1. 1.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and Supercapacitors begin? Science 343(6176):1210–1211CrossRefPubMedGoogle Scholar
  2. 2.
    Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88CrossRefPubMedGoogle Scholar
  3. 3.
    Brousse T, Bélanger D, Long JW (2015) To be or not to be pseudocapacitive? J Electrochem Soc 162(5):A5185–A5189CrossRefGoogle Scholar
  4. 4.
    Li Y, Li Z, Shen PK (2014) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480CrossRefGoogle Scholar
  5. 5.
    Balducci A, Belanger D, Brousse T, Long JW, Sugimoto W (2017) A guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J Electrochem Soc 164(7):A1487–A1488CrossRefGoogle Scholar
  6. 6.
    Zhang F, Xiao F, Dong ZH, Shi W (2013) Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes. Electrochim Acta 114:25–132Google Scholar
  7. 7.
    Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H (2013) Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor. Electrochim Acta 88:519–525CrossRefGoogle Scholar
  8. 8.
    Repp S, Harputlu E, Gurgen S, , Castellano M, , Kremer N, , Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E. (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10:1877–1884, 4CrossRefPubMedGoogle Scholar
  9. 9.
    Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multicolored fluorescent carbon-dots. Sci Rep 7(1):11222CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang K, Gao S, Du Z, Yuan A, Lu W, Chen L (2016) MnO2-carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J Power Sources 305:30–36CrossRefGoogle Scholar
  11. 11.
    Xu L, Shi R, Li H, Han C, Wu M, Wong C-P, Kang F, Li B (2018) Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 127:459–468CrossRefGoogle Scholar
  12. 12.
    Zhang F, Zhang G, Yao H, Gao Z, Chen X, Yang Y (2018) Scalable in-situ growth of self-assembled coordination supramolecular network arrays: a novel high-performance energy storage material. Chem Eng J 338:230–239CrossRefGoogle Scholar
  13. 13.
    Vadivel S, Saravanakumar B, Kumaravel M, Maruthamani D, Balasubramanian N, Manikandan A, Ramadoss G, Paul B, Hariganesh S (2018) Facile solvothermal synthesis of BiOI microsquares as a novel electrode material for supercapacitor applications. Mater Lett 210:109–112CrossRefGoogle Scholar
  14. 14.
    Li L, Liu X, Liu C, Wan H, Zhang J, Liang P, Wang H, Wang H (2018) Ultra-long life nickel nanowires@nickel-cobalt hydroxide nanoarrays composite pseudocapacitive electrode: construction and activation mechanism. Electrochim Acta 259:303–312CrossRefGoogle Scholar
  15. 15.
    Muller GA, Cook JB, Kim H-S, Tolbert SH, Dunn B (2015) High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett 15(3):1911–1917CrossRefPubMedGoogle Scholar
  16. 16.
    Krishnamoorthy K, Pazhamalai P, Kim SJ (2017) Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor. Electrochim Acta 227:85–94CrossRefGoogle Scholar
  17. 17.
    Qiu Y, Fan H, Chang X, Dang H, Luo CZ (2018) Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance. Mater Lett 434:1–20Google Scholar
  18. 18.
    Vernardou D, Sapountzis A, Spanakis E, Kenanakis G, Koudoumas E, Katsarakis N (2013) Electrochemical activity of electrodeposited V2O5 coatings. J Electrochem Soc 160:6–9CrossRefGoogle Scholar
  19. 19.
    Pang H, Wei C, Li X, Li G, Ma Y, Li S, Chen J, Zhang J (2014) Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci Rep 4:1–8Google Scholar
  20. 20.
    Akbarzadeh R, Dehghani H, Behnoudnia F (2014) Sodium thiosulfate-assisted synthesis of NiS2 nanostructure by using nickel(II)-Salen precursor: optical and magnetic properties. Dalton Trans 43(44):16745–16753CrossRefPubMedGoogle Scholar
  21. 21.
    Nair N, Majumder S, Sankapal BR. (2018) Pseudocapacitive behavior of unidirectional CdS nanoforest in 3D architecture through solution chemistry 659: 105–111Google Scholar
  22. 22.
    Liu H, Guo Z, Wang X, Hao J, Lian J (2018) CuS/MnS composite hexagonal nanosheet clusters: synthesis and enhanced pseudocapacitive properties. Electrochim Acta 271:425–432CrossRefGoogle Scholar
  23. 23.
    Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78CrossRefGoogle Scholar
  24. 24.
    Gao MR, Xu Y-F, Jiang J, Yu S-H (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42(7):2986–3167CrossRefPubMedGoogle Scholar
  25. 25.
    Yu S-H, Yoshimura M (2002) Fabrication of powders and thin films of various nickel sulfides by soft solution-processing routes. Adv Funct Mater 12(4):277–285CrossRefGoogle Scholar
  26. 26.
    Du N, Zheng W, Li X, He G, Wang L, Shi J (2017) Nanosheet-assembled NiS hollow structures with double shells and controlled shapes for high-performance supercapacitors. Chem Eng J 323:415–424CrossRefGoogle Scholar
  27. 27.
    Nandhini S, Juliet Christina Mary A, Muralidharan G (2018) Facile microwave-hydrothermal synthesis of NiS nanostructures for supercapacitor applications. Appl Surf Sci 449:485–491CrossRefGoogle Scholar
  28. 28.
    Peng L, Ji X, Wan H, Ruan Y, Xu K, Chen Ch ML, Jiang J (2015) Nickel sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim Acta 182:361–367CrossRefGoogle Scholar
  29. 29.
    Abdelhady AL, Malik MA, O'Brien P, Tuna F (2012) Nickel and iron sulfide nanoparticles from thiobiurets. J Phys Chem C 116(3):2253–2259CrossRefGoogle Scholar
  30. 30.
    Yang J, Duan X, Qin Q, Zheng W (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1(27):7880–7884CrossRefGoogle Scholar
  31. 31.
    Li X, Shen J, Li N, Ye M (2015) Template-free solvothermal synthesis of NiS2 microspheres on graphene sheets for high-performance supercapacitors. Mater Lett 139:81–85CrossRefGoogle Scholar
  32. 32.
    Liu X, Qi X, Zhang Z, Ren L, Liu Y, Meng L, Huang K, Zhong J (2014) One-step electrochemical deposition of nickel sulfide/graphene and its use for supercapacitors. Ceram Int 40:8189–8193CrossRefGoogle Scholar
  33. 33.
    Han Z-H, Yu Sh-H, Li Y-P, Zhao H-Q, Li F-Q, Xie Y, Qian Y-T (1999) Convenient solvothermal synthesis and phase control of nickel selenides with different morphologies. Chem Mater 11:2302–2304CrossRefGoogle Scholar
  34. 34.
    Tiana WG, Wang PP, Ren L, Sun GB, Sun LN, Yang K, Wei BQ, Hu CW (2007) Controllable synthesis of NiC2O4·2H2O nanorods precursor and applications in the synthesis of nickel-based nanostructures. J Solid State Chem 180:3551–3559CrossRefGoogle Scholar
  35. 35.
    Carney CS, Gump CJ, Weimer AW (2006) Rapid nickel oxalate thermal decomposition for producing fine porous nickel metal powders: Part 3: Mechanism. Mater Sci Eng A 431:26–40CrossRefGoogle Scholar
  36. 36.
    Akbarzadeh R, Dehghani H (2018) Ni- supported multi-walled carbon nanotubes for intensification of electrochemical hydrogen storage. J Solid State Electrochem 22:395CrossRefGoogle Scholar
  37. 37.
    Li G, Huang X, Shi Y, Guo J (2001) Preparation and characteristics of nanocrystalline NiO by organic solvent method. Mater Lett 51:325–330CrossRefGoogle Scholar
  38. 38.
    Nakamoto K (1963) Infrared spectra of inorganic and coordination compounds. John Wiley, New YorkGoogle Scholar
  39. 39.
    Behnoudnia F, Dehghani H (2014) Anion effect on the control of morphology for NiC2O4·2H2O nanostructures as precursors for synthesis of Ni(OH)2 and NiO nanostructures and their application for removing heavy metal ions of cadmium(II) and lead(II). Dalton Trans 43:3471–3478CrossRefPubMedGoogle Scholar
  40. 40.
    Krishnamoorthy K, Veerasubramani GK, Radhakrishnan S, Kim SJ (2014) One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem Eng J 251:116–122CrossRefGoogle Scholar
  41. 41.
    Parveen N, Ansari SA, Alamri HR, Ansari MO, Khan Z, Cho MH (2018) Facile Synthesis of SnS2 nanostructures with different morphologies for high-performance supercapacitor applications. ACS Omega 3:1581–1588CrossRefGoogle Scholar
  42. 42.
    Chen CY, Shih ZY, Yang Z, Chang HT (2012) Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors. J Power Sources 215:43–47CrossRefGoogle Scholar
  43. 43.
    Ren B, Fan M, Liu Q, Wang J, Song D, Bai X (2013) Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochimica Acta 92:197–204CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of KashanKashanIran

Personalised recommendations