Journal of Solid State Electrochemistry

, Volume 22, Issue 11, pp 3493–3505 | Cite as

Chemical and electrochemical treatment effects on the morphology, structure, and electrochemical performance of carbon fiber with different graphitization indexes

  • D. A. L. AlmeidaEmail author
  • A. B. Couto
  • S. S. Oishi
  • N. G. Ferreira
Original Paper


The association of capacitive charging of the double-layer and a faradic redox reaction is desirable on carbon fiber (CF) when oxygen functional groups or other heteroatoms are present on its surface enhancing its capacitive properties. In this work, a systematic study of carbon fiber produced at three different heat treatment temperatures (HTT) of 1000, 1500, and 2000 °C was performed upon two approaches: middle (chemical) and severe (electrochemical) oxidative treatments. Morphological, structural, and surface chemical changes were investigated by field emission gun-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical responses were analyzed by galvanostatic charge/discharge, electrochemical impedance spectroscopy, and cyclic voltammetry. Raman results showed that the electrochemical oxidation promoted structural variation on CF samples independently of their HTT. Concerning the specific capacitance, the results indicated that chemical treatment was more effective for CF1000 than those for CF1500 and CF2000. This behavior may be attributed to higher amount of oxygen on its surface as well as its lower structural ordering. Otherwise, for CF1000, the electrochemical treatment increased its resistivity. However, for CF1500 and CF2000, which present higher graphitization levels and less heteroatom contents, greater capacitance values were observed after their electrochemical oxidative treatment.


Carbon fiber Oxidative treatment Supercapacitor 

Supplementary material

10008_2018_4037_MOESM1_ESM.pdf (367 kb)
ESM 1 (PDF 366 kb)


  1. 1.
    Staiti P, Lufrano F (2010) Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide-carbon electrodes. Electrochim Acta 55(25):7436–7442CrossRefGoogle Scholar
  2. 2.
    Wang Y-Q, Viswanathan H, Audi AA, Sherwood PMA (2000) X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 22. Comparison between surface treatment of untreated and previously surface-treated fibers. Chem Mater 12(4):1100–1107CrossRefGoogle Scholar
  3. 3.
    Tong Y, Wang X, Su H, Xu L (2011) Oxidation kinetics of polyacrylonitrile-based carbon fibers in air and the effect on their tensile properties. Corros Sci 53(8):2484–2488CrossRefGoogle Scholar
  4. 4.
    Yue ZR, Jiang W, Wang L, Gardner SD, Pittman CU Jr (1999) Surface characterization of electrochemically oxidized carbon fibers. Carbon 37(11):1785–1796CrossRefGoogle Scholar
  5. 5.
    Kim BH, Yang KS (2013) Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide. Electrochim Acta 88:597–603CrossRefGoogle Scholar
  6. 6.
    Chung DDL (2004) Electrical applications of carbon materials. J Mater Sci 39(8):2645–2661CrossRefGoogle Scholar
  7. 7.
    Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sources 195(24):7880–7903CrossRefGoogle Scholar
  8. 8.
    Kim C, Choi YO, Lee WJ, Yang KS (2004) Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions. Electrochim Acta 50(2-3):883–887CrossRefGoogle Scholar
  9. 9.
    Xia K, Gao Q, Jiang J, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13):1718–1726CrossRefGoogle Scholar
  10. 10.
    Chen YC, Hsu YK, Lin YG, Lin YK, Horng YY, Chen LC, Chen KH (2011) Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim Acta 56(20):7124–7130CrossRefGoogle Scholar
  11. 11.
    Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432CrossRefGoogle Scholar
  12. 12.
    Dai Z, Zhang B, Shi F, Li M, Zhang Z, Gu Y (2011) Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Appl Surf Sci 257(20):8457–8461CrossRefGoogle Scholar
  13. 13.
    Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amorós D, Morallón E (2009) Effect of electrochemical treatments on the surface chemistry of activated carbon. Carbon 47(4):1018–1027CrossRefGoogle Scholar
  14. 14.
    Berenguer R, Marco-Lozar JP, Quijada C, Cazorla-Amorós D, Morallón E (2012) A comparison between oxidation of activated carbon by electrochemical and chemical treatments. Carbon 50(3):1123–1134CrossRefGoogle Scholar
  15. 15.
    Desimoni E, Salvi AM, Casella IG, Damiano D (1993) Controlled chemical oxidation of carbon fibres: an XPS-XAES-SEM study. Surf Interface Anal 20(11):909–918CrossRefGoogle Scholar
  16. 16.
    Milczarek G, Ciszewski A, Stepniak I (2011) Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor. J Power Sources 196(18):7882–7885CrossRefGoogle Scholar
  17. 17.
    Yun YS, Lee ME, Joo MJ, Jin HJ (2014) High-performance supercapacitors based on freestanding carbon-based composite paper electrodes. J Power Sources 246:540–547CrossRefGoogle Scholar
  18. 18.
    Zhong C, Gong S, Jin L, Li P, Cao Q (2015) Preparation of nitrogen-doped pitch-based carbon materials for supercapacitors. Mater Lett 156:1–6CrossRefGoogle Scholar
  19. 19.
    Medeiros LI, Couto AB, Matsushima JT, Baldan MR, Ferreira NG (2012) Nanocrystalline diamond coating on carbon fibers produced at different temperatures: morphological, structural and electrochemical study. Thin Solid Films 520(16):5277–5283CrossRefGoogle Scholar
  20. 20.
    Cheng Z, Liu P, Guo B, Qiu Y, Xu P, Fan H (2015) Surface activation of carbon paper with potassium dichromate lotion and application as a supercapacitor. Appl Surf Sci 349:833–838CrossRefGoogle Scholar
  21. 21.
    Gao A, Su C, Luo S, Tong Y, Xu L (2011) Densification mechanism of polyacrylonitrile-based carbon fiber during heat treatment. J Phys Chem Solids 72(10):1159–1164CrossRefGoogle Scholar
  22. 22.
    Kainourgios P, Kartsonakis IA, Dragatogiannis DA, Koumoulos EP, Goulis P, Charitidis CA (2017) Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins. Appl Surf Sci 416:593–604CrossRefGoogle Scholar
  23. 23.
    Nian YR, Teng H (2003) Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. J Electroanal Chem 540:119–127CrossRefGoogle Scholar
  24. 24.
    Desimoni E, Casella GI, Morone A, Salvi AM (1990) XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces. Surf Interface Anal 15(10):627–634CrossRefGoogle Scholar
  25. 25.
    Weitzsacker CL, Xie M, Drzal LT (1997) Using XPS to investigate fiber/matrix chemical interactions in carbon-fiber-reinforced composites. Surf Interface Anal 25(2):53–63CrossRefGoogle Scholar
  26. 26.
    Collins J, Zheng D, Ngo T, Qu D, Foster M (2014) Partial graphitization of activated carbon by surface acidification. Carbon 79:500–517CrossRefGoogle Scholar
  27. 27.
    Musiol P, Szatkowski P, Gubernat M, Weselucha-Birczynska A, Blazewicz S (2016) Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers. Ceram Int 42(10):11603–11610CrossRefGoogle Scholar
  28. 28.
    Takai K, Oga M, Sato H, Enoki T, Ohki Y, Taomoto A, Suenaga K, Iijima S (2003) Structure and electronic properties of a nongraphitic disordered carbon system and its heat-treatment effects. Phys Rev B 67:1–11CrossRefGoogle Scholar
  29. 29.
    Nakamizo M, Tamai K (1984) Raman spectra of the oxidized and polished surfaces of carbon. Carbon 22(2):197–198CrossRefGoogle Scholar
  30. 30.
    Ong TS, Yang H (2000) Effect of atmosphere on the mechanical milling of natural graphite. Carbon 38(15):2077–2085CrossRefGoogle Scholar
  31. 31.
    Hu C, Liu ACY, Weyland M, Madani SH, Pendleton P, Rodríguez-Reinoso F, Kaneko K, Biggs MJ (2015) A multi-method study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the activation pathway. Carbon 85:119–134CrossRefGoogle Scholar
  32. 32.
    Kobayashi T, Sumiya K, Fukuba Y, Fujie M, Takahagi T, Tashiro K (2011) Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements. Carbon 49(5):1646–1652CrossRefGoogle Scholar
  33. 33.
    Montes-Morán MA, Young RJ (2002) Raman spectroscopy study of HM carbon fibres: effect of plasma treatment on the interfacial properties of single fibre/epoxy composites. Carbon 40(6):845–855CrossRefGoogle Scholar
  34. 34.
    Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD (1998) Effect of various treatments on carbon fiber surfaces studied by Raman microprobe spectrometry. Appl Spectrosc 52(3):356–360CrossRefGoogle Scholar
  35. 35.
    Samuel BA, Rajagopalan R, Foley HC, Haque MA (2010) Effect of pyrolysis temperature on the microstructure of disordered carbon nanowires. Thin Solid Films 519(1):91–95CrossRefGoogle Scholar
  36. 36.
    Goncalves ES, Rezende MC, Ferreira NG (2006) Dynamics of defects and surface structure formation in reticulated vitreous carbon. Braz J Phys 36(2a):264–266CrossRefGoogle Scholar
  37. 37.
    Barros EB, Demir NS, Souza Filho AG, Mendes Filho J, Jorio A, Dresselhaus G, Dresselhaus MS (2005) Raman spectroscopy of graphitic foams. Phys Rev B: Condens Matter Mater Phys 71:1–5CrossRefGoogle Scholar
  38. 38.
    Baldan MR, Almeida EC, Azevedo AF, Gonçalves ES, Rezende MC, Ferreira NG (2007) Raman validity for crystallite size La determination on reticulated vitreous carbon with different graphitization index. Appl Surf Sci 254:600–603CrossRefGoogle Scholar
  39. 39.
    Couzi M, Bruneel JL, Talaga D, Bokobza L (2016) A multi wavelength Raman scattering study of defective graphitic carbon materials: the first order Raman spectra revisited. Carbon 107:388–394CrossRefGoogle Scholar
  40. 40.
    Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Shen Z, Savilov SS, Lunin VV (2017) Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. Phys Chem Chem Phys 19(3):2276–2285CrossRefPubMedGoogle Scholar
  41. 41.
    Yi Y, Weinberg G, Prenzel M, Greiner M, Heumann S, Becker S, Schlögl R (2017) Electrochemical corrosion of a glassy carbon electrode. Catal Today 295:32–40CrossRefGoogle Scholar
  42. 42.
    Hu C, Sedghi S, Silvestre-Albero A, Andersson GG, Sharma A, Pendleton P, Rodríguez-Reinoso F, Kaneko K, Biggs MJ (2015) Raman spectroscopy study of the transformation of the carbonaceous skeleton of a polymer-based nanoporous carbon along the thermal annealing pathway. Carbon 85:147–158CrossRefGoogle Scholar
  43. 43.
    Frackowiak E, Francóis B (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRefGoogle Scholar
  44. 44.
    Chen XL, Li WS, Tan CL, Li W, Wu YZ (2008) Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J Power Sources 184(2):668–674CrossRefGoogle Scholar
  45. 45.
    Zou Y, Wang S (2015) Interconnecting carbon fibers with the in-situ electrochemically exfoliated graphene as advanced binder-free electrode materials for flexible supercapacitor. Sci Rep 5:1–7Google Scholar
  46. 46.
    Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294CrossRefGoogle Scholar
  47. 47.
    Venkatesh S, Vishista K (2018) Identification of the best chemical equivalent ratio to produce emeraldine salt exhibiting better pseudo capacitance. Electrochim Acta 263:76–84CrossRefGoogle Scholar
  48. 48.
    Ra EJ, Raymundo-Piñero E, Lee YH, Béguin F (2009) High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47(13):2984–2992CrossRefGoogle Scholar
  49. 49.
    Nian Y-R, Teng H (2002) Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J Electrochem Soc 149(8):A1008CrossRefGoogle Scholar
  50. 50.
    Momma T, Liu X, Osaka T, Ushio Y, Sawada Y (1996) Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor. J Power Sources 60(2):249–253CrossRefGoogle Scholar
  51. 51.
    Kim WJ, Ko TH, Seo MK, Chung YS, Kim HY, Kim BS (2018) Engineered carbon fiber papers as flexible binder-free electrodes for high-performance capacitive energy storage. J Ind Eng Chem 59:277–285CrossRefGoogle Scholar
  52. 52.
    Diez N, Díaz P, Álvarez P, González Z, Granda M, Blanco C, Santamaría R, Menéndez R (2014) Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. Mater Lett 136:214–217CrossRefGoogle Scholar
  53. 53.
    Hsieh CT, Teng H (2002) Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 40(5):667–674CrossRefGoogle Scholar
  54. 54.
    Sivakkumar SR, Kim WJ, Choi JA, MacFarlane DR, Forsyth M, Kim DW (2007) Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. J Power Sources 171(2):1062–1068CrossRefGoogle Scholar
  55. 55.
    Shang X, Chi J-Q, Lu S-S, Gou J-X, Dong B, Li X, Liu Y-R, Yan K-L, Chai Y-M, Liu C-G (2017) Carbon fiber cloth supported interwoven WS2 nanosplates with highly enhanced performances for supercapacitors. Appl Surf Sci 392:708–714CrossRefGoogle Scholar
  56. 56.
    Li C, Wang D, Wang X, Liang J (2005) Controlled electrochemical oxidation for enhancing the capacitance of carbon nanotube composites. Carbon 43(7):1557–1560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • D. A. L. Almeida
    • 1
    Email author
  • A. B. Couto
    • 1
  • S. S. Oishi
    • 1
  • N. G. Ferreira
    • 1
  1. 1.Instituto Nacional de Pesquisas Espaciais – INPESão José dos CamposBrazil

Personalised recommendations