Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2917–2928 | Cite as

Functionalized graphene–polyaniline nanocomposite as electrode material for asymmetric supercapacitors

  • Changyuan Bao
  • Qingqing He
  • Jiajun HanEmail author
  • Jinning Cheng
  • Ruitao Zhang
Original Paper


A polyaniline/sulfonated graphene (PANI/SG) nanostructure was synthesized as electrode material for an asymmetric supercapacitor via a novel in situ chemical oxidative polymerization method including two oxidants. The composite’s structure and morphology were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) measurements. Furthermore, the electrochemical performances of the composite were characterized by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) techniques in detail. In addition, we have triumphantly manufactured an asymmetric supercapacitor (ASC) employing activated carbon (AC) and PANI/SG as the positive and negative electrodes, respectively. The ASC possessed an extended potential window (1.4 V), a remarkable cycling property (85.9% capacitance retention after 5000 cycles), and a satisfactory average energy and power density (23 Wh/kg and 6.1 kW/kg).



We gratefully acknowledged the support provided by School of Marine Science and Technology, Harbin Institute of Technology, Weihai.


  1. 1.
    Fominykh K, Feckl JM, Sicklinger J, Döblinger M, Böcklein S, Ziegler J, Peter L, Rathousky J, Scheidt E, Bein T, Fattakhova-Rohlfing D (2014) Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv Funct Mater 24(21):3123–3129CrossRefGoogle Scholar
  2. 2.
    Iqbal S, Bahadur A, Saeed A, Zhou K, Shoaib M, Waqas M (2017) Electrochemical performance of 2D polyaniline anchored CuS/graphene nano-active composite as anode material for lithium-ion battery. J Colloid Interface Sci 502:16–23CrossRefPubMedGoogle Scholar
  3. 3.
    Dubal DP, Ayyad O, Ruiz V, Romero PG (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 46:1777–1790CrossRefGoogle Scholar
  4. 4.
    Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613CrossRefPubMedGoogle Scholar
  5. 5.
    Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850CrossRefPubMedGoogle Scholar
  6. 6.
    Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46(5):1053–1061CrossRefPubMedGoogle Scholar
  7. 7.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251CrossRefPubMedGoogle Scholar
  8. 8.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  9. 9.
    Al-Enizi AM, Elzatahry AA, Abdullah AM, AlMaadeed MA, Wang J, Zhao D, Al-Deyab S (2014) Synthesis and electrochemical properties of nickel oxide/carbon nanofiber composites. Carbon 71:276–283CrossRefGoogle Scholar
  10. 10.
    Kim TY, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):6899–6905CrossRefPubMedGoogle Scholar
  11. 11.
    Kim M, Kim Y, Lee KM, Jeong SY, Lee E, Baeck SH, Shim SE (2016) Electrochemical improvement due to alignment of carbon nanofibers fabricated by electrospinning as an electrode for supercapacitor. Carbon 99:607–618CrossRefGoogle Scholar
  12. 12.
    Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:157–164Google Scholar
  13. 13.
    Huang H, Gan M, Ma L, Yu L, Hu H, Yang F, Li Y, Ge C (2015) Fabrication of polyaniline/graphene/titania nanotube arrays nanocomposite and their application in supercapacitors. J Alloys Compd 630:214–221CrossRefGoogle Scholar
  14. 14.
    Zhang YQ, Xia XH, Tu JP, Mai YJ, Shi SJ, Wang XL, Gu CD (2012) Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J Power Sources 199:413–417CrossRefGoogle Scholar
  15. 15.
    Wang L, Yu J, Dong X, Li X, Xie Y, Chen S, Li P, Hou H, Song Y (2016) Three-dimensional macroporous carbon/Fe3O4-doped porous carbon nanorods for high-performance supercapacitor. ACS Sustain Chem Eng 4(3):1531–1537CrossRefGoogle Scholar
  16. 16.
    Wang Y, Xu S, Liu W, Cheng H, Chen S, Liu X, Liu J, Tai Q, Hu C (2017) Facile fabrication of urchin-like polyaniline microspheres for electrochemical energy storage. Electrochim Acta 254:25–35CrossRefGoogle Scholar
  17. 17.
    Gao S, Zang P, Dang L, Xu H, Shi F, Liu Z, Lei Z (2016) Extraordinarily high-rate capability of polyaniline nanorod arrays on graphene nanomesh. J Power Sources 304:111–118CrossRefGoogle Scholar
  18. 18.
    Goubard-Bretesché N, Crosnier O, Favier F, Brousse T (2016) Improving the volumetric energy density of supercapacitors. Electrochim Acta 206:458–463CrossRefGoogle Scholar
  19. 19.
    Zhu D, Cheng K, Wang Y, Sun D, Gan L, Chen T, Jiang J, Liu M (2017) Nitrogen-doped porous carbons with nanofiber-like structure derived from poly (aniline-co-p-phenylenediamine) for supercapacitors. Electrochim Acta 224:17–24CrossRefGoogle Scholar
  20. 20.
    Liu M, Shi M, Lu W, Zhu D, Li L, Gan L (2017) Core-shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes. Chem Eng J 313:518–526CrossRefGoogle Scholar
  21. 21.
    Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1(2):195–220CrossRefGoogle Scholar
  22. 22.
    Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng H (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131CrossRefGoogle Scholar
  23. 23.
    Xia X, Tu J, Zhang Y, Wang X, Gu C, Zhao XB, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6):5531–5538CrossRefPubMedGoogle Scholar
  24. 24.
    Tong Z, Yang Y, Wang J, Zhao J, Su B, Li Y (2014) Layered polyaniline/graphene film from sandwich-structured polyaniline/graphene/polyaniline nanosheets for high-performance pseudosupercapacitors. J Mater Chem A 2(13):4642–4651CrossRefGoogle Scholar
  25. 25.
    Wang H, Hao Q, Yang X, Lu L, Wang X (2010) A nanostructured graphene/polyaniline hybrid material for supercapacitors. Nanoscale 2(10):2164–2170CrossRefPubMedGoogle Scholar
  26. 26.
    Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145CrossRefPubMedGoogle Scholar
  27. 27.
    Hu H, Liu S, Hanif M, Chen S, Hou H (2014) Three-dimensional cross-linked carbon network wrapped with ordered polyaniline nanowires for high-performance pseudo-supercapacitors. J Power Sources 268:451–458CrossRefGoogle Scholar
  28. 28.
    Ramkumar R, Sundaram MM (2016) Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices. New J Chem 40(9):7456–7464CrossRefGoogle Scholar
  29. 29.
    Chang CM, Hu ZH, Lee TY, Huang Y, Ji W, Liu W, Yeh J, Wei Y (2016) Biotemplated hierarchical polyaniline composite electrodes with high performance for flexible supercapacitors. J Mater Chem A 4(23):9133–9145CrossRefGoogle Scholar
  30. 30.
    Liu P, Han JJ, Jiang LF, Li ZY, Cheng JN (2017) Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells. Appl Surf Sci 400:446–452CrossRefGoogle Scholar
  31. 31.
    Male U, Modigunta JKR (2017) Design and synthesis of polyaniline-grafted reduced graphene oxide via azobenzene pendants for high-performance supercapacitors. Polymer 110:242–249CrossRefGoogle Scholar
  32. 32.
    Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271–279CrossRefPubMedGoogle Scholar
  33. 33.
    Golikand AN, Bagherzadeh M, Shirazi Z (2017) Evaluation of the polyaniline based nanocomposite modified with graphene nanosheet, carbon nanotube, and Pt nanoparticle as a material for supercapacitor. Electrochim Acta 247:116–124CrossRefGoogle Scholar
  34. 34.
    Ashok KN, Baek JB (2014) Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chem Commun 50(48):6298–6308CrossRefGoogle Scholar
  35. 35.
    Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2(13):4491–4509CrossRefGoogle Scholar
  36. 36.
    Ma B, Zhou X, Bao H, Li X, Wang G (2012) Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J Power Sources 215:36–42CrossRefGoogle Scholar
  37. 37.
    Fan T, Tong S, Zeng W, Niu Q, Liu Y, Kao C, Liu J, Huang W, Min Y, Epstein AJ (2015) Self-assembling sulfonated graphene/polyaniline nanocomposite paper for high performance supercapacitor. Synth Met 199:79–86CrossRefGoogle Scholar
  38. 38.
    Hummers JW, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  39. 39.
    Bagherzadeh M, Heydari M (2013) Electrochemical detection of dopamine based on pre-concentration by graphene nanosheets. Analyst 138(20):6044–6051CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806–1812CrossRefPubMedGoogle Scholar
  41. 41.
    Fu XB, Feng JY, Wang H, Ng KM (2010) Fast synthesis and formation mechanism of γ-MnO2 hollow nanospheres for aerobic oxidation of alcohols. Mater Res Bull 45(9):1218–1223CrossRefGoogle Scholar
  42. 42.
    Zhang J, Shu D, Zhang TR, Chen HY, Zhao HM, Wang YS, Sun ZJ, Tang SQ, Fang XM, Cao XF (2012) Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route. J Alloys Compd 532:1–9CrossRefGoogle Scholar
  43. 43.
    Htut KZ, Kim M, Lee E, Lee G, Baeck SH, Shim SE (2017) Biodegradable polymer-modified graphene/polyaniline electrodes for supercapacitors. Synth Met 227:61–70CrossRefGoogle Scholar
  44. 44.
    Hao Q, Wang H, Yang X, Lu L, Wang X (2011) Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. Nano Res 4(4):323–333CrossRefGoogle Scholar
  45. 45.
    Yuan WH, Gu YJ, Li BQ, Li L (2012) Synthesis and characterization of sulfonated graphene and conducting films. J Inorg Mater 27:1271–1276CrossRefGoogle Scholar
  46. 46.
    Pan C, Gu H, Dong L (2016) Synthesis and electrochemical performance of polyaniline@MnO2/graphene ternary composites for electrochemical supercapacitors. J Power Sources 303:175–181CrossRefGoogle Scholar
  47. 47.
    Bandyopadhyay P, Kuila T, Balamurugan J, Nguyen TT, Kim NH, Lee JH (2017) Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application. Chem Eng J 308:1174–1184CrossRefGoogle Scholar
  48. 48.
    Yu P, Li Y, Zhao X, Wu L, Zhang Q (2014) Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor. Langmuir 30(18):5306–5313CrossRefPubMedGoogle Scholar
  49. 49.
    Jin LN, Shao F, Jin C, Zhang J, Liu P, Guo M, Bian S (2017) High-performance textile supercapacitor electrode materials enhanced with three-dimensional carbon nanotubes/graphene conductive network and in situ polymerized polyaniline. Electrochim Acta 249:387–394CrossRefGoogle Scholar
  50. 50.
    Hao M, Chen Y, Xiong WL, Zhang L, Wu LY, Fu Y, Mei T, Wang JY, Li JH, Wang XB (2016) Coherent polyaniline/graphene oxides/multi-walled carbon nanotubes ternary composites for asymmetric supercapacitors. Electrochim Acta 191:165–172CrossRefGoogle Scholar
  51. 51.
    Stoller MD, Ruoff RS (2010) Methods and best practices for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3(9):1294–1301CrossRefGoogle Scholar
  52. 52.
    Zhang Z, Xiao F, Xiao J, Wang S (2015) Functionalized carbonaceous fibers for high performance flexible all-solid-state asymmetric supercapacitors. J Mater Chem A 3(22):11817–11823CrossRefGoogle Scholar
  53. 53.
    Khosrozadeh A, Xing M, Wang Q (2015) A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles. Appl Energy 153:87–93CrossRefGoogle Scholar
  54. 54.
    Tran VC, Nguyen VH, Nguyen TT, Lee JH, Huynh DC, Shim J (2016) Polyaniline and multi-walled carbon nanotube-intercalated graphene aerogel and its electrochemical properties. Synth Met 215:150–157CrossRefGoogle Scholar
  55. 55.
    Liu Y, Ma Y, Guang S, Xu H, Su X (2014) Facile fabrication of three-dimensional highly ordered structural polyaniline–graphene bulk hybrid materials for high performance supercapacitor electrodes. J Mater Chem A 2(3):813–823CrossRefGoogle Scholar
  56. 56.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22(12):2632–2641CrossRefGoogle Scholar
  57. 57.
    Yu H, Ge X, Bulin C, Xing R, Li R, Xin G, Zhang B (2017) Facile fabrication and energy storage analysis of graphene/PANI paper electrodes for supercapacitor application. Electrochim Acta 253:239–247CrossRefGoogle Scholar
  58. 58.
    Bulin C, Yu H, Ge X, Xin G, Xing R, Li R, Zhang B (2017) Preparation and supercapacitor performance of functionalized graphene aerogel loaded with polyaniline as a freestanding electrode. J Mater Sci 52(10):5871–5881CrossRefGoogle Scholar
  59. 59.
    Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970CrossRefPubMedGoogle Scholar
  60. 60.
    Li S, Zhao C, Shu K, Wang C, Guo Z, Wallace GG, Liu H (2014) Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 79:554–562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Changyuan Bao
    • 1
  • Qingqing He
    • 2
  • Jiajun Han
    • 1
    Email author
  • Jinning Cheng
    • 1
  • Ruitao Zhang
    • 1
  1. 1.Department of Applied ChemistryHarbin Institute of TechnologyWeihaiChina
  2. 2.Department of ChemistryZhejiang UniversityZhejiangChina

Personalised recommendations