Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2901–2916 | Cite as

Solid and acid electrolytes for Al-air batteries based on xanthan-HCl hydrogels

  • F. Migliardini
  • T. M. Di Palma
  • M. F. Gaele
  • P. CorboEmail author
Original Paper


This paper presents first investigations on solid and strongly acid electrolytes for Al-air batteries. These electrolytes are prepared starting from a “green” polysaccharide (xanthan gum) and HCl solutions (between 4 and 24 wt%). The gelling capability of xanthan is used to obtain real solid products characterized by ionic conductivities of practical interest (10−2 S cm−1) in electrochemical cells. The adsorption properties of xanthan on metal Al are exploited to control anode self-corrosion and realize Al-air cells with very high anodic efficiencies (> 80%). The behavior of Al-air cells is studied utilizing the weight loss technique, electrochemical impedance spectroscopy, potentiodynamic polarization curves, scanning electron microscopy coupled to energy-dispersive spectroscopy, and discharge tests at constant current (1–5 mA) with Pt/C-based air cathodes. The best overall performance is observed with electrolytes prepared starting from HCl at 24% and gel solid/liquid ratio of 1.40 g ml−1. The hydrogels obtained in this work permit for the first time the operation of an Al-air galvanic cell based on solid and strongly acid electrolytes with high anodic efficiency and limited dendrite formation.


Al-air batteries Al corrosion Xanthan Acid hydrogels Gel polymer electrolytes 



The authors gratefully acknowledge Dr. G. Perretta (Istituto Motori) for the support in SEM-EDS measurements.

Funding information

The authors gratefully acknowledge the Italian Ministry of University and Research for financial support in “Fuel Cell Lab - Innovative systems and high efficiency technologies for poly-generation” Project, PON03PE_00109_1.


  1. 1.
    Blueton KF, Sammells AF (1979) Metal/air batteries: Their status and potential — a review. J Power Sources 4(4):263–279CrossRefGoogle Scholar
  2. 2.
    Rahman MA, Wang X, Wen C (2013) High energy density metal-air batteries: a review. J Electrochem Soc 160(10):A1759–A1771CrossRefGoogle Scholar
  3. 3.
    Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10CrossRefGoogle Scholar
  4. 4.
    Egan DR, Ponce de Leon C, Wood RJK, Jones RL, Stokes KR, Walsh FC (2013) Developments in electrode materials and electrolytes for aluminium–air batteries. J Power Sources 236:293–310CrossRefGoogle Scholar
  5. 5.
    Li J, Chen J, Wang H, Ren Y, Liu K, Tang Y, Shao M (2017) Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Mater 8:49–58CrossRefGoogle Scholar
  6. 6.
    Li J, Zhou N, Song J, Fu L, Yan J, Tang Y, Wang H (2017) Cu–MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of Ketjenblack carbon in al–air battery. ACS Sustain Chem Eng 6:413–421CrossRefGoogle Scholar
  7. 7.
    Li J, Zhou Z, Liu K, Li F, Peng Z, Tang Y, Wang H (2017) Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. J Power Sources 343:30–38CrossRefGoogle Scholar
  8. 8.
    Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, W Ramli WMF, Daud WRW, Sahari J (2015) Recent developments in materials for aluminum–air batteries: A review. J Ind Eng Chem 32:1–20CrossRefGoogle Scholar
  9. 9.
    Revel R, Audichon T, Gonzalez S (2014) Non-aqueous aluminium–air battery based on ionic liquid electrolyte. J Power Sources 272:415–421CrossRefGoogle Scholar
  10. 10.
    Hog M, Burgenmeister B, Bromberger K, Schuster M, Riedel S, Krossing I (2017) First investigations towards the feasibility of an Al/Br2 battery based on ionic liquids. ChemElectroChem 4(11):2934–2942CrossRefGoogle Scholar
  11. 11.
    Safak S, Duran B, Yurt A, Turkoglu G (2012) Schiff bases as corrosion inhibitor for aluminium in HCl solution. Corros Sci 54:251–259CrossRefGoogle Scholar
  12. 12.
    Fares MM, Maayta AK, Al-Mustafa JA (2012) Corrosion inhibition of iota-carrageenan natural polymer on aluminum in presence of zwitterion mediator in HCl media. Corros Sci 65:223–230CrossRefGoogle Scholar
  13. 13.
    Fares MM, Maayta AK, Al-Qudah MM (2012) Pectin as promising green corrosion inhibitor of aluminum in hydrochloric acid solution. Corros Sci 60:112–117CrossRefGoogle Scholar
  14. 14.
    Oguzie EE (2017) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539CrossRefGoogle Scholar
  15. 15.
    Deyab MA (2017) 1-Allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as an effective organic additive in aluminum-air battery. Electrochim Acta 244:178–183CrossRefGoogle Scholar
  16. 16.
    Li L, Manthiram A (2015) Long-life, high-voltage acidic Zn–air batteries. Adv Energy Mater 6(1502054):1–7Google Scholar
  17. 17.
    Fan L, Wei S, Li S, Li Q, Lu Y (2018) Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv Energy Mater 8(1702657):1–31Google Scholar
  18. 18.
    Yue L, Ma J, Zhang J, Zhao J, Dong S, Liu Z, Cui G, Chen L (2016) All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater 5:139–164CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y (2014) All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475CrossRefGoogle Scholar
  20. 20.
    Mohamad AA (2008) Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries. Corros Sci 50(12):3475–3479CrossRefGoogle Scholar
  21. 21.
    Aziz MF, Buraidah MH, Careem MA, Arof AK (2015) PVA based gel polymer electrolytes with mixed iodide salts (K+I− and Bu4N+I−) for dye-sensitized solar cell application. Electrochim Acta 182:217–223CrossRefGoogle Scholar
  22. 22.
    Colò F, Bella F, Nair JR, Destro M, Gerbaldi C (2015) Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochim Acta 174:185–190CrossRefGoogle Scholar
  23. 23.
    Isa MIN, Samsudin AS (2016) Potential study of biopolymer-based carboxymethylcellulose electrolytes system for solid-state battery application. Int J Polym Mater 65(11):561–567CrossRefGoogle Scholar
  24. 24.
    Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydr Polym 91(2):682–685CrossRefPubMedGoogle Scholar
  25. 25.
    Syahidah SN, Majid SR (2013) Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochim Acta 112:678–685CrossRefGoogle Scholar
  26. 26.
    Chiappone A, Bella F, Nair JR, Meligrana G, Bongiovanni R, Gerbaldi C (2014) Structure–performance correlation of nanocellulose-based polymer electrolytes for efficient quasi-solid DSSCs. ChemElectroChem 1(8):1350–1358CrossRefGoogle Scholar
  27. 27.
    Finkenstadt VL (2005) Natural polysaccharides as electroactive polymers. Appl Microbiol Biot 67(6):735–745CrossRefGoogle Scholar
  28. 28.
    Kadokawa J, Murakami M, Takegawa A, Kaneko Y (2009) Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr Polym 75(1):180–183CrossRefGoogle Scholar
  29. 29.
    Yoshida H, Takei F, Sawatari N (2002) High ionic conducting polymer with polysaccharide and its applications. FUJITSU Scientific & Technical Journal 38:39–45Google Scholar
  30. 30.
    Di Palma TM, Migliardini F, Caputo D, Corbo P (2017) Xanthan and κ-carrageenan based alkaline hydrogels as electrolytes for Al/air batteries. Carbohydr Polym 157:122–127CrossRefPubMedGoogle Scholar
  31. 31.
    Liu Y, Sun Q, Li W, Adair KR, Li J, Sun X (2017) A comprehensive review on recent progress in aluminium-air batteries. Green Energ Environ 2(3):246–277CrossRefGoogle Scholar
  32. 32.
    Morris VJ (2006) In: Stephen AM, Phillips GO, Williams PA (eds) Food polysaccharides and their applications. Taylor & Francis, New YorkGoogle Scholar
  33. 33.
    Mobin M, Rizvi M (2016) Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1 M HCl. Carbohydr Polym 136:384–393CrossRefPubMedGoogle Scholar
  34. 34.
    Biswas A, Pal S, Udayabhanu G (2015) Experimental and theoretical studies of xanthan gum and its graft co-polymer as corrosion inhibitor for mild steel in 15% HCl. Appl Surf Sci 353:173–183CrossRefGoogle Scholar
  35. 35.
    Arukalam IO, Alaohuru CO, Ugbo CO, Jideofor KN, Ehirim PN, Madufor IC (2014) Effect of Xanthan gum on the Corrosion Protection of Aluminium in HCl medium. Int J Adv Res Tech 3:5–16Google Scholar
  36. 36.
    Arukalam IO, Ijomah NT, Nwanonenyi SC, Obasi HC, Aharanwa BC, Anyanwu PI (2014) Studies on acid corrosion of aluminium by a naturally occurring polymer (Xanthan gum). Int J Sci Eng Res 5:663–673Google Scholar
  37. 37.
    Babaladimath G, Badalamoole V, Nandibewoor ST (2018) Electrical conducting Xanthan Gum-graft-polyaniline as corrosion inhibitor for aluminum in hydrochloric acid environment. Mater Chem Phys 205:171–179CrossRefGoogle Scholar
  38. 38.
    Branzoi V, Golgovici F, Branzoi F (2002) Aluminium corrosion in hydrochloric acid solutions and the effect of some organic inhibitors. Mater Chem Phys 78:122–131CrossRefGoogle Scholar
  39. 39.
    El-Awadi AA, Abd-El-Nabey BA, Aziz SG (1993) Thermodynamic and kinetic factors in chloride ion pitting and nitrogen donor ligand inhibition of aluminium metal corrosion in aggressive acid media. J Chem Soc Faraday Trans 89(5):795–802CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Istituto MotoriNational Research Council of ItalyNaplesItaly

Personalised recommendations