Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2845–2853 | Cite as

Nanometric thin films of non-doped diamond-like carbon grown on n-type (P-doped) silicon substrates as electrochemical electrodes

  • S. A. HeviaEmail author
  • M. Bejide
  • B. Duran
  • A. Rosenkranz
  • H. M. Ruiz
  • M. Favre
  • R. del Rio
Original Paper


The electrochemical response of thin non-doped diamond-like carbon films grown by pulsed laser deposition onto n-type (P-doped) silicon substrates was studied using different redox-active couples. The experiments were conducted as a function of the film thickness which can be controlled by the deposition time. It could be demonstrated that the film thickness greatly influences the electrochemical response and the electron transference rate at the surface, thus reaching an optimal response for films with a thickness of around 35 nm. This holds true for all redox couples studied. Those films show rather similar properties compared to boron-doped diamond electrodes, thus becoming an interesting coating to be studied as electrochemical electrode.


Diamond-like carbon Thin films Pulsed laser deposition Electrochemical electrodes 


Funding information

This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-16-1-0384 and has been funded by the Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT 1161614 and 1141119. B. Durán acknowledges postdoctoral project FONDECYT 3170784. A. Rosenkranz gratefully acknowledges the financial support for his postdoctoral project given by CIENUC.


  1. 1.
    Lifshitz Y (1996) Hydrogen-free amorphous carbon films: correlation between growth conditions and properties. Diam Relat Mater 5(3-5):388–400CrossRefGoogle Scholar
  2. 2.
    Grill A (1999) Diamond-like carbon: state of the art. Diam Relat Mater 8(2-5):428–434CrossRefGoogle Scholar
  3. 3.
    Robertson J (1992) Properties of diamond-like carbon. Surf Coat Technol 50(3):185–203CrossRefGoogle Scholar
  4. 4.
    Tsai H (1990) Structure and physical properties of amorphous hydrogenated carbon (a-C:H) films. Mater Sci Forum 52–53:71–102Google Scholar
  5. 5.
    Nebel M, Neugebauer S, Kiesele H, Schuhmann W (2010) Local reactivity of diamond-like carbon modified PTFE membranes used in SO2 sensors. Electrochim Acta 55(27):7923–7928CrossRefGoogle Scholar
  6. 6.
    Petersen M, Bandorf R, Bräuer G, Klages CP (2012) Diamond-like carbon films as piezoresistors in highly sensitive force sensors. Diam Relat Mater 26:50–54CrossRefGoogle Scholar
  7. 7.
    Meškinis Š, Gudaitis R, Vasiliauskas A, Čiegis A, Šlapikas K, Tamulevičius T, Andrulevičius M, Tamulevičius S (2015) Piezoresistive properties of diamond like carbon films containing copper. Diam Relat Mater 60:20–25CrossRefGoogle Scholar
  8. 8.
    Virganavičius D, Cadarso VJ, Kirchner R, Stankevičius L, Tamulevičius T, Tamulevičius S, Schift H (2016) Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask. Appl Surf Sci 385:145–152CrossRefGoogle Scholar
  9. 9.
    Robertson SN, Gibson D, MacKay WG, Reid S, Williams C, Birney R (2016) Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf Coat Technol 314:72–78. CrossRefGoogle Scholar
  10. 10.
    Visbal H, Aihara Y, Ito S, Watanabe T, Park Y, Doo S (2016) The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics. J Power Sources 314:85–92CrossRefGoogle Scholar
  11. 11.
    Yang Y, Sun Q, Li YS, Li H, Fu ZW (2011) Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc 158(10):B1211–B1216CrossRefGoogle Scholar
  12. 12.
    Honda K, Nakahara A, Naragino H, Yoshinaga K (2013) High sensitive amperometric detection of glucose using conductive DLC electrode in higher potential region. ECS Electrochem Lett 2(6):B9–B11CrossRefGoogle Scholar
  13. 13.
    Liao TT, Zhang TF, Li SS, Deng QY, Wu BJ, Zhang YZ, Zhou YJ, Guo YB, Leng YX, Huang N (2016) Biological responses of diamond-like carbon (DLC) films with different structures in biomedical application. Mater Sci Eng C 69:751–759CrossRefGoogle Scholar
  14. 14.
    Kim JI, Bordeanu A, Pyun JC (2009) Diamond-like carbon (DLC) microelectrode for electrochemical ELISA. Biosens Bioelectron 24(5):1394–1398CrossRefPubMedGoogle Scholar
  15. 15.
    Zeng A, Samper V, Tan SN, Poenar DP, Lim TM, Heng CK (2003) Potentiostatic deposition and detection of DNA on conductive nitrogen doped diamond-like carbon film electrode. TRANSDUCERS, Solid-State Sensors, Actuators and Microsystems, 12th International Conference.
  16. 16.
    Granger MC, Witek M, Xu J, Wang J, Hupert M, Hanks A, Koppang MD, Butler JE, Lucazeau G, Mermoux M, Strojek JW, Swain GM (2000) Standard electrochemical behavior of high-quality, boron-doped polycrystalline diamond thin-film electrodes.
  17. 17.
    Zeng A, Neto VF, Gracio JJ, Fan QH (2014) Diamond-like carbon (DLC) films as electrochemical electrodes. Diam Relat Mater 43:12–22CrossRefGoogle Scholar
  18. 18.
    Sopchak D, Miller B, Kalish R, Avyigal Y, Shi X (2002) Dopamine and ascorbate analysis at hydrodynamic electrodes of boron doped diamond and nitrogen incorporated tetrahedral amorphous carbon. Electroanalysis 14(7-8):473–478CrossRefGoogle Scholar
  19. 19.
    Protopopova V, Iyer A, Wester N, Kondrateva A, Sainio S, Palomäki T, Laurila T, Mishin M, Koskinen J (2015) Ultrathin undoped tetrahedral amorphous carbon films: the role of the underlying titanium layer on the electronic structure. Diam Relat Mater 57:43–52CrossRefGoogle Scholar
  20. 20.
    Protopopova VS, Wester N, Caro MA, Gabdullin PG, Palomäki T, Laurila T, Koskinen J (2015) Ultrathin undoped tetrahedral amorphous carbon films: thickness dependence of the electronic structure and implications for their electrochemical behaviour. Phys Chem Chem Phys 17(14):9020–9031CrossRefPubMedGoogle Scholar
  21. 21.
    Sainio S, Nordlund D, Caro MA, Gandhiraman R, Koehne J, Wester N, Koskinen J, Meyyappan M, Laurila T (2016) Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-C) thin film electrodes and implications of their electrochemical properties. J Phys Chem C 120(15):8298–8304CrossRefGoogle Scholar
  22. 22.
    Palomäki T, Wester N, Caro MA, Sainio S, Protopopova V, Koskinen J, Laurila T (2017) Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films. Electrochim Acta 225:1–10CrossRefGoogle Scholar
  23. 23.
    Guzmán F, Favre M, Ruiz HM, Hevia S, Caballero LS, Wyndham ES, Bhuyan H, Flores M, Mändl S (2013) Pulsed laser deposition of thin carbon films in a neutral gas background. J Phys D Appl Phys 46(21):215202–215206CrossRefGoogle Scholar
  24. 24.
    Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R Rep 37:129–281CrossRefGoogle Scholar
  25. 25.
    Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans A Math Phys Eng Sci 362(1824):2477–2512CrossRefPubMedGoogle Scholar
  26. 26.
    Ferrari AC, Robertson J (2001) Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys Rev B 64(7):75414CrossRefGoogle Scholar
  27. 27.
    Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61(20):14095–14107CrossRefGoogle Scholar
  28. 28.
    Hevia SA, Guzmán-Olivos F, Muñoz I, Muñoz-Cordovez G, Caballero-Bendixsen S, Ruiz HM, Favre M (2017) Nanostructured substrate effects on diamond-like carbon films properties grown by pulsed laser deposition. Surf Coat Technol 312:55–60CrossRefGoogle Scholar
  29. 29.
    Prawer S, Nugent KW, Lifshitz Y, Lempert GD, Grossman E, Kulik J, Avigal I, Kalish R (1996) Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition. Diam Relat Mater 5(3-5):433–438CrossRefGoogle Scholar
  30. 30.
    Yang X, Haubold L, DeVivo G, Swain GM (2012) Electroanalytical performance of nitrogen-containing tetrahedral amorphous carbon thin-film electrodes. Anal Chem 84(14):6240–6248CrossRefPubMedGoogle Scholar
  31. 31.
    Eckermann A, Feld DJ, Shaw JA, Meade TJ (2010) Electrochemistry of redox-active self-assembled monolayers. Coord Chem Rev 254(15-16):1769–1802CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals ans Applications. John Wiley & SonsGoogle Scholar
  33. 33.
    Zeng A, Liu E, Tan SN, Zhang S, Gao J (2002) Cyclic voltammetry studies of sputtered nitrogen doped diamond-like carbon film electrodes. Electroanalysis 14(15-16):1110–1115CrossRefGoogle Scholar
  34. 34.
    Wakabayashi RH, Paik H, Murphy MJ, Schlom DG, Brützam M, Uecker R, van Dover RB, DiSalvo FJ, Abruña HD (2017) Rotating disk electrode voltammetry of thin films of novel oxide materials. J Electrochem Soc 164(14):H1154–H1160CrossRefGoogle Scholar
  35. 35.
    Neufeld AK, O’Mullan AP (2006) Effect of the mediator in feedback mode-based SECM interrogation of indium tin-oxide and boron-doped diamond electrodes. J Solid State Electrochem 10(10):808–816CrossRefGoogle Scholar
  36. 36.
    Holloway AF, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes. J Solid State Electrochem 12(10):1337–1348CrossRefGoogle Scholar
  37. 37.
    Liu X, Wang Y, Zhan L, Qiao W, Liang X, Ling L (2011) Effect of oxygen-containing functional groups on the impedance behavior of activated carbon-based electric double-layer capacitors. J Solid State Electrochem 15(2):413–419CrossRefGoogle Scholar
  38. 38.
    Tanaka Y, Furuta M, Kuriyama K, Kuwabara R, Katsuki Y, Kondo T, Fujishima A, Honda K (2011) Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods. Electrochim Acta 56(3):1172–1181CrossRefGoogle Scholar
  39. 39.
    Yagi I, Notsu H, Kondo T, Tryk DA, Fujishima A (1999) Electrochemical selectivity for redox systems at oxygen-terminated diamond electrodes. Electroanal Chem 473(1-2):173–178CrossRefGoogle Scholar
  40. 40.
    Chen P, McCreery RL (1996) Electron transfer kinetics at modified carbon electrode surfaces: the role of specific surface sites. Anal Chem 68(22):3958–3965CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. A. Hevia
    • 1
    • 2
    Email author
  • M. Bejide
    • 1
  • B. Duran
    • 1
    • 2
  • A. Rosenkranz
    • 1
    • 2
  • H. M. Ruiz
    • 3
  • M. Favre
    • 1
    • 2
  • R. del Rio
    • 2
    • 4
  1. 1.Instituto de FísicaPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de Investigación en Nanotecnología y Materiales AvanzadosPontificia Universidad Católica de ChileSantiagoChile
  3. 3.Departamento de FísicaUniversidad Técnica Federico Santa MaríaValparaísoChile
  4. 4.Facultad de QuímicaPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations