Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2837–2843 | Cite as

Effect of F-doping on the properties of LiFePO4-x/3Fx/C cathode materials via wet mechanical agitation-assisted high-temperature ball milling method

  • Xuetian Li
  • Zhongbao ShaoEmail author
  • Kuiren Liu
  • Qing Zhao
  • Guangfu Liu
  • Binshi Xu
Original Paper


LiFePO4-x/3Fx/C (x = 0, 0.03, 0.06, 0.09) were obtained via wet mechanical agitation-assisted high-temperature ball milling method. XRD, SEM, TEM, galvanostatic testing, EIS, and CV were applied to study the effects of the amount of F-doping on the structure and electrochemical performance of LiFePO4/C. The results showed that LiFePO3.98F0.06/C displayed the best electrochemical performance: its initial discharge capacities were 162.6 (0.1 C), 156.6 (0.5 C), 150.2 (1.0 C), 144.5 (2.0 C), 131.6 (5.0 C), and 115.8 mAhg−1 (10 C), respectively. Moreover, its discharge capacity was 110.5 mAhg−1 over 100 cycles with a capacity retention rate of 95.4% at 10 C-rate. F-doping is suggested to be an effective approach to enhance the electrochemical performance of LiFePO4.


LiFePO4-x/3Fx/C Wet mechanical agitation-assisted High-temperature ball milling method Electrochemical performance F-doping 


Funding information

The authors gratefully acknowledge supports by the National Natural Science Foundation of China (No. 51704068), the China Postdoctoral Science Foundation (No. 2017M610184), and the Postdoctoral Foundation of Northeastern University (No. 20170305).


  1. 1.
    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194CrossRefGoogle Scholar
  2. 2.
    Kim HS, Cho BW, Cho W (2004) Cycling performance of LiFePO4 cathode material for lithium secondary batteries. J Power Sources 132(1-2):235–239CrossRefGoogle Scholar
  3. 3.
    Zhi X, Liang G, Wang L (2009) The cycling performance of LiFePO4/C cathode materials. J Power Sources 189(1):779–782CrossRefGoogle Scholar
  4. 4.
    Park M, Zhang XC, Chung MD, Less GB, Sastry AM (2010) A review of conduction phenomena in li-ion batteries. J Power Sources 195(24):7904–7929CrossRefGoogle Scholar
  5. 5.
    Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148(3-4):283–289CrossRefGoogle Scholar
  6. 6.
    Zhao NN, Li YS, Zhao XX, Zhi XK, Liang GC (2016) Effect of particle size and purity on the low temperature electrochemical performance of LiFePO4/C cathode material. J Alloys Compd 683:123–132CrossRefGoogle Scholar
  7. 7.
    Saravanan KR, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ (2010) Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ Sci 3(4):457–463CrossRefGoogle Scholar
  8. 8.
    Huang Z, Luo PF, Wang DX (2017) Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode. J Phys Chem Solids 102:115–120CrossRefGoogle Scholar
  9. 9.
    Hwang J, Kong KC, Chang W, Joc E, Namd K, Kim J (2017) New liquid carbon dioxide based strategy for high energy/power density LiFePO4. Nano Energy 36:398–410CrossRefGoogle Scholar
  10. 10.
    Liu HC, Wang YM, Hsieh CC (2017) Optimized synthesis of Cu-doped LiFePO4/C cathode material by an ethylene glycol assisted co-precipitation method. Ceram Int 43(3):3196–3201CrossRefGoogle Scholar
  11. 11.
    Yiming W, Giuli G, Moretti A, Nobili F, Fehr KT, Paris E, Marassi R (2015) Synthesis and characterization of Zn-doped LiFePO4 cathode materials for Li-ion battery. Mater Chem Phys 155:191–204CrossRefGoogle Scholar
  12. 12.
    Fang X, Li J, Huang K, Liu S, Huang C, Zhuang S, Zhang J (2012) Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries fang. J Solid State Electrochem 16(2):767–773CrossRefGoogle Scholar
  13. 13.
    Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J Power Sources 193(2):841–845CrossRefGoogle Scholar
  14. 14.
    Sun CS, Zhang Y, Zhang XJ, Zhou Z (2010) Structural and electrochemical properties of Cl-doped LiFePO4/C. J Power Sources 195(11):3680–3683CrossRefGoogle Scholar
  15. 15.
    Mathew V, Gim J, Kim E, Song J, Ahn D, Im WB, Paik Y, Kim J (2014) A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. J Solid State Electrochem 18(6):1557–1567CrossRefGoogle Scholar
  16. 16.
    Fey GTK, Lu TL, Wu FY, Li WH (2008) Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochem 12:825–833CrossRefGoogle Scholar
  17. 17.
    Li W, Ying J, Wan C, Jiang C, Gao J, Tang C (2007) Preparation and characterization of LiFePO4 from NH4FePO4·H2O under different microwave heating conditions. J Solid State Electrochem 11(6):799–803CrossRefGoogle Scholar
  18. 18.
    Lu F, Zhou YC, Liu J, Pan Y (2011) Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim Acta 56(24):8833–8838CrossRefGoogle Scholar
  19. 19.
    Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2007) Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. J Power Sources 174(2):720–725CrossRefGoogle Scholar
  20. 20.
    Gao C, Zhou J, Liu GZ, Wang L (2017) Synthesis of F-doped LiFePO4/C cathode materials for high performance lithium-ion batteries using co-precipitation method with hydrofluoric acid source. J Alloys Compd 727:501–513CrossRefGoogle Scholar
  21. 21.
    Li XT, Shao ZB, Liu KR, Zhao Q, Liu GF, Xu BS (2017) Influence of Li:Fe molar ratio on the performance of the LiFePO4/C prepared by high temperature ball milling method. J Electroanal Chem 801:368–372CrossRefGoogle Scholar
  22. 22.
    Li XT, Shao ZB, Liu KR, Zhao Q, Liu GF, Xu BS (2017) Influence of synthesis method on the performance of the LiFePO4/C cathode material. Colloids Surf A Physicochem Eng Asp 529:850–855CrossRefGoogle Scholar
  23. 23.
    Zhao Q, Shao ZB, Liu CJ, Jiang MF, Li XT, Zevenhoven R, Henrik S (2014) Preparation of Cu-Cr alloy powder by mechanical alloying. J Alloys Compd 607:118–124CrossRefGoogle Scholar
  24. 24.
    Jia LY, Shao ZB, Lü Q, Tian YW, Han JF (2014) Preparation of red-emitting phosphor (Y, Gd) BO3: EU 3+ by high temperature ball milling. Ceram Int 40(1):739–743CrossRefGoogle Scholar
  25. 25.
    Tian M, Li XT, Shao ZB, Shen FM (2017) Effects of sintering time on the performance of LiNi1/3Co1/3Mn1/3O2 synthesized by high temperature ball milling method. Int J Electrochem Sci 12:7166–7173CrossRefGoogle Scholar
  26. 26.
    Ma ZP, Shao GJ, Wang GL, Zhang Y, Du JP (2014) Effects of Nb-doped on the structure and electrochemical performance of LiFePO4/C composites. J Solid State Chem 210(1):232–237CrossRefGoogle Scholar
  27. 27.
    Johnson ID, Lübke M, Wu OY, Makwana NM, Smales GJ, Islam HU, Dedigama RY, Gruar RI, Tighe CJ, Scanlon DO, Corà F, Brett DJL, Shearing PR, Darr JA (2016) Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J Power Sources 302:410–418CrossRefGoogle Scholar
  28. 28.
    Liu H, Yu DF, Bao YW, Gao Y, Xia XH (2014) Visible light photocatalytic performance of lithium fluoride modified TiO2. Hans J Nanotechnol 4(01):8–11CrossRefGoogle Scholar
  29. 29.
    Yen H, Rohan R, Chiou CY, Hsieh CJ, Bolloju S, Li CC, Yang YF, Ong CW, Lee JT (2017) Hierarchy concomitant in situ stable iron (II)-carbon source manipulation using ferrocenecarboxylic acid for hydrothermal synthesis of LiFePO4 as high-capacity battery cathode. Electrochim Acta 253:227–238CrossRefGoogle Scholar
  30. 30.
    Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10(10):4123–4127CrossRefPubMedGoogle Scholar
  31. 31.
    Cai G, Fung KY, Ng KM, Chu KL, Hui K, Xue L (2016) Critical assessment of particle quality of commercial LiFePO4 cathode material using coin cells-a causal table for lithium-ion battery performance. J Solid State Electrochem 20(2):379–387CrossRefGoogle Scholar
  32. 32.
    Ma ZS, Xie ZC, Wang Y, Zhang PP, Pan Y, Zhou YC, Lu C (2015) Failure modes of hollow core-shell structural active materials during the lithiation-delithiation process. J Power Sources 290:114–122CrossRefGoogle Scholar
  33. 33.
    Wang CP, Ma ZS, Wang Y, Lu CS (2016) Failure prediction of high-capacity electrode materials in lithium-ion batteries. J Electrochem Soc 163(7):A1157–A1163CrossRefGoogle Scholar
  34. 34.
    Ma ZS, Xie ZC, Wang Y, Lu CS (2017) Softening by electrochemical reaction-induced dislocations in lithium-ion batteries. Scr Mater 127:33–36CrossRefGoogle Scholar
  35. 35.
    Li J, Qu QT, Zhang LF, Zhang L, Zheng HH (2013) A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. J Alloys Compd 579:377–383CrossRefGoogle Scholar
  36. 36.
    Swiderska-Mocek A, Lewandowski A (2017) Kinetics of Li-ion transfer reaction at LiMn2O4, LiCoO2, and LiFePO4 cathodes. J Solid State Electrochem 21(5):1365–1372CrossRefGoogle Scholar
  37. 37.
    Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154(4):A253–A257CrossRefGoogle Scholar
  38. 38.
    Xu Y, Zhao MS, Sun B (2016) Doping supervalent rare earth ion in LiFePO4/C through hydrothermal method. Solid State Ionics 291:14–19CrossRefGoogle Scholar
  39. 39.
    Fathollahi F, Javanbakht M, Omidvar H, Ghaemi M (2015) LiFePO4/C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance. J Alloys Compd 643:40–48CrossRefGoogle Scholar
  40. 40.
    Han B, Meng XD, Ma L, Nan JY (2016) Nitrogen-doped carbon decorated LiFePO4 composite synthesized via a microwave heating route using polydopamine as carbon-nitrogen precursor. Ceram Int 42(2):2789–2797CrossRefGoogle Scholar
  41. 41.
    Yang JL, Wang JJ, Tang YJ, Wang DN, Li XF, Hu YH, Li RY, Liang GX, Sham TK, Sun XL (2013) LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded grapheme. Energy Environ Sci 6(5):1521–1528CrossRefGoogle Scholar
  42. 42.
    Zhao CS, Wang LN, Chen JT, Gao M (2017) Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries. Electrochim Acta 255:266–273CrossRefGoogle Scholar
  43. 43.
    Han CG, Zhu CY, Saito G, Akiyama T (2015) Glycine/sucrose-based solution combustion synthesis of high-purity LiMn2O4 with improved yield as cathode materials for lithium-ion batteries. Adv Powder Technol 26(2):665–671CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations