Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2855–2861 | Cite as

A highly plastic Li+ ion conductor based on the KI-KBH4 solid solvent system

  • Reona Miyazaki
  • Takehiko Hihara
Original Paper
  • 94 Downloads

Abstract

In the present work, the dominant Li+ conduction in 6 mol% LiI-doped KI-KBH4 solid solvent was verified by electrochemical measurement and time-of-flight secondary ion mass spectrometry (TOF-SIMS). After the potentiostatic reduction of the cell Li | KI-KBH4-LiI | Mo at − 0.5 V vs Li+/Li, the deposition of Li metal on the surface of Mo electrode was confirmed by TOF-SIMS measurement. A pair of reduction and oxidation currents are clearly observed at 0 V vs Li+/Li in a cyclic voltammogram of the cell Li | KI-KBH4-LiI | Mo, which is a direct indication for Li+ ion conduction in the KI-KBH4 solid solvent system. From the results of AC impedance measurement of KI-KBH4-LiI, the bulk resistance was mainly observed while the solid electrolyte was pelletized only by uniaxial pressing. The dense microstructure of the pellet supports the results of impedance measurement where the contribution of grain boundary resistance was not observed. The extreme plastic property of the Li+ ion conductor based on KI-KBH4 will allow the interfaces between the solid electrolytes and electrode active materials to be adhered closely.

Keywords

Solid electrolyte Lithium ion conductor Li-free compounds Solid solvent KI LiI 

Notes

Funding information

R. M. expresses his great thanks for the financial support from Iketani Science and Technology Foundation and the Ministry of Education, Culture, Sports, Science and Technology, through a Grant-in-Aid for Scientific Research (C), 2015, No. 15 K06463.

Supplementary material

10008_2018_4000_MOESM1_ESM.docx (37 kb)
ESM 1 (DOCX 37 kb)

References

  1. 1.
    Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, Ceder G (2015) Design principles for solid-state lithium superionic conductors. Nat Mater 14:1026–1031CrossRefPubMedGoogle Scholar
  2. 2.
    Meesala Y, Jena A, Chang H, Liu R (2017) Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Lett 2:2734–2751CrossRefGoogle Scholar
  3. 3.
    Porcarelli L, Shaplov AS, Bella F, Nair JR, Mecerreyes D, Gerbaldi C (2016) Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature. ACS Energy Lett 1:678–682CrossRefGoogle Scholar
  4. 4.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor Noriaki. Nat Mater 10:682–686CrossRefPubMedGoogle Scholar
  5. 5.
    Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Daemen LL (2012) Superionic Conductivity in Lithium-Rich Anti-Perovskites. J Am Chem Soc 134:15042–15047CrossRefPubMedGoogle Scholar
  7. 7.
    Lü X, Howard JW, Chen A, Zhu J, Li S, Wu G, Dowden P, Xu H, Zhao Y, Jia Q (2016) Antiperovskite Li3OCl Superionic Conductor Films for Solid-State Li-Ion Batteries. Adv Sci 3:1500359CrossRefGoogle Scholar
  8. 8.
    Li Y, Zhou W, Xin S, Li S, Zhu J, Xujie L, Cui Z, Jia Q, Zhou J, Zhao Y, Goodenough JB (2016) Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. Angew Chem Int Ed 55:9965–9968CrossRefGoogle Scholar
  9. 9.
    Tatsumisago M, Takano R, Nose M, Nagao K, Kato A, Sakuda A, Tadanaga K, Hayashi A (2017) Electrical and mechanical properties of glass and glass-ceramic electrolytes in the system Li3BO3-Li2SO4. J Ceram Soc Jpn 125:433–437CrossRefGoogle Scholar
  10. 10.
    Tatsumisago M, Takano R, Tadanaga K, Hayashi A (2014) Preparation of Li3BO3-Li2SO4 glasseceramic electrolytes for all-oxide lithium batteries. J Power Sources 270:603–607CrossRefGoogle Scholar
  11. 11.
    Hanson RC (1970) Diffusion of Lithium in Potassium Chloride. Phys Stat Sol 1:109–113CrossRefGoogle Scholar
  12. 12.
    Farrington GC, Roih WL (1977) Li+-Na+ BETA ALUMINA - A NOVEL Li+ SOLID ELECTROLYTE. Electrochim Acta 22:767–772CrossRefGoogle Scholar
  13. 13.
    Lazzari M, Scrosati B (1978) Co-ionic conductivity in some silver solid electrolytes. Electrochim Acta 23:75CrossRefGoogle Scholar
  14. 14.
    Miyazaki R, Maekawa H, Takamura H (2014) Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties. APL Mater 2:56109-1–56109–6CrossRefGoogle Scholar
  15. 15.
    Miyazaki R, Kurihara D, Hihara T (2016) Li+ ionic conduction properties on NaI doped with a small amount of LiBH4. J Solid State Electrochem 20:2759–2764CrossRefGoogle Scholar
  16. 16.
    Miyazaki R, Kurihara D, Hayashi D, Furughori S, Shomura M, Hihara T (2017) Post-anneal effect on the structural and Li+ conduction properties in NaI - LiBH4 system. MRS Adv 2(7):389–394CrossRefGoogle Scholar
  17. 17.
    Miyazaki R, Noda Y, Miyazaki H, Soda K, Hihara T (2018) Li+ ion doping into KI-KBH4 solid solvent systems: The role of the BH4- anion. J Alloys Compd 735:1291–1296CrossRefGoogle Scholar
  18. 18.
    Miyazaki R, Karahashi T, Kumatani N, Noda Y, Ando M, Takamura H, Matsuo M, Orimo S, Maekawa H (2011) Room temperature lithium fast-ion conduction and phase relationship of LiI stabilized LiBH4. Solid State Ionics 192:143–147CrossRefGoogle Scholar
  19. 19.
    Azuma S, Aiyama K, Kawamura G, Muto H, Mizushima T, Uchikoshi T, Matsuda A (2017) Colloidal processing of Li2S–P2S5 films fabricated via electrophoretic deposition methods and their characterization as a solid electrolyte for all solid state lithium ion batteries. J Ceram Soc Jpn 125:287–292CrossRefGoogle Scholar
  20. 20.
    Jain SC, Parashar DC (1969) Ionic conductivity of potassium iodide crystals. J Phys C Solid State Phys 2:167–174CrossRefGoogle Scholar
  21. 21.
    JANAF-FourthEd (1998) Thermochemical Tables. Available at: http://kinetics.nist.gov/janaf/
  22. 22.
    Mezaki T, Kuronuma Y, Oikawa I, Kamegawa A, Takamura H (2016) Li-Ion Conductivity and Phase Stability of Ca-Doped LiBH4 under High Pressure. Inorg Chem 55:10484–10489CrossRefPubMedGoogle Scholar
  23. 23.
    Chen W, Zhang H, Wang Y, Ma Z, Li Z (2014) In-situ Microstructural Investigations by Electron-beam Irradiation Induced Crystallization of Amorphous MoOx Thin Films with High Performance for Li-ion Storage. Electrochim Acta 144:369–375CrossRefGoogle Scholar
  24. 24.
    Sirdeshmukh DB, Sirdeshmukh L, Subhadra K (2001) Alkali Halides A Handbook of Physical Properties. Springer, BerlinCrossRefGoogle Scholar
  25. 25.
    McGrogan FP, Swamy T, Bishop SR, Eggleton E, Porz L, Chen X, Chiang YM, Vliet KJV (2017) Compliant Yet Brittle Mechanical Behavior of Li2S-P2S5 Lithium-Ion-Conducting Solid Electrolyte. Adv Energy Mater 7:1602011-1–1602011–5CrossRefGoogle Scholar
  26. 26.
    Sakuda A, Hayashi A, Tatsumisago M (2013) Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery. Sci Rep 3:1–5CrossRefGoogle Scholar
  27. 27.
    Yoon D, Lazarus D (1972) Pressure Dependence of Ionic Conductivity in KC1, NaC1, KBr, and NaBr. Phys Rev B 5:4935–4945CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Science and Engineering, Graduate School of EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations