Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2945–2958 | Cite as

Effect of IL incorporation on ionic transport in PVdF-HFP-based polymer electrolyte nanocomposite doped with NiBTC-metal-organic framework

  • Rituraj Dutta
  • A. KumarEmail author
Original Paper


Ni-based metal-organic framework (MOF), nickel 1,3,5-benzene tricarboxylate (NiBTC) has been synthesized by solvothermal method and incorporated with ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) at varying weight ratios to use as nanofiller in the polymer matrix of poly (vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). The structural properties of MOF-NiBTC-based composite polymer electrolyte system upon IL incorporation have been investigated by XRD, FTIR, BET, scanning EXAFS and XANES techniques. Shifting of vibrational modes of –COOH groups is observed from FTIR spectra due to strong interaction of Ni metal cluster with BF4 anion of the IL. Local coordination structure and oscillation periodicity of Ni K-edge are investigated in R-space and k-space from the EXAFS as well as XANES spectra. Asymmetric oscillatory behavior with reduction in coordination number is observed upon IL incorporation due to strong interaction of guest IL with the host MOF-NiBTC. Dielectric relaxation and scaling of AC conductivity have been analyzed in the temperature range of 300–380 K and frequency range of 42 Hz–5 MHz. Non Debye type dielectric relaxation dynamics is observed due to short range hopping of ions. Ion concentration and temperature independent scaling behaviors are followed by the composite polymer electrolyte membranes. Optimum ionic conductivity of 6.5 × 10−3 S cm−1 and electrochemical stability up to 5.7 V have been obtained at 50 wt% of IL incorporation in the porous nanocomposite electrolyte system.


Metal-organic framework Composite polymer electrolyte Ionic liquid Dielectric relaxation, AC conductivity 



The authors sincerely acknowledge the financial support from DST-INSPIRE, Govt. of India through Grant No.: DST/INSPIRE Fellowship/2015/IF150994. Authors are also thankful to Professor S. N. Jha and Chandrani Nayak, Raja Raman Centre for Advanced Technology (RRCAT), Indore, India, for extending help in Scanning EXAFS and XANES facilities using synchrotron beamline.


  1. 1.
    Li J, Kupplerand RJ, Zhou H (2009) Chem Soc Rev 38(5):1477–1504CrossRefPubMedGoogle Scholar
  2. 2.
    Shekhah O, Liu J, Fischer R, Woll C (2011) Chem Soc Rev 40(2):1081–1106CrossRefPubMedGoogle Scholar
  3. 3.
    Bohrmanand JA, Carreon MA (2012) Chem Commun 48(42):5130–5132CrossRefGoogle Scholar
  4. 4.
    Welton T (1997) Chem Rev 99(8):2071–2084CrossRefGoogle Scholar
  5. 5.
    Seddon KR (1997) Chem Technol Biotechnol 68(4):351–356CrossRefGoogle Scholar
  6. 6.
    Chen Y, Hu Z, Gupta Krishna M, Jianwen J (2011) J Phys Chem C 115(44):21736–21742CrossRefGoogle Scholar
  7. 7.
    Kazuyuki F, Kazuya O, Ryuichi I, Teppei Y, Hiroshi K (2015) Chem Sci 6:4306–4310CrossRefGoogle Scholar
  8. 8.
    Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Chem Mater 18(5):1337–1346CrossRefGoogle Scholar
  9. 9.
    Sang X, Zhang J, Xiang J, Cui J, Zheng L, Zhang J, Wu Z, Li Z, Mo G, Xu Y, Song J, Liu C, Tan X, Luo T, Zhang B, Han B (2017) Nat Commun 8:1–7CrossRefGoogle Scholar
  10. 10.
    Sciortino L, Alessi A, Messina F, Buscarino G, Gelardi FM (2015) J Phys Chem C 119:7826−7830CrossRefGoogle Scholar
  11. 11.
    Morel FL, Pin S, Huthwelker T, Ranocchiari M, van Bokhoven JA (2015) Phys Chem Chem Phys 17(5):3326–3331CrossRefPubMedGoogle Scholar
  12. 12.
    Muller M, Hermes S, Kahler K, van den Berg MWE, Muhler M, Fischer RA (2008) Chem Mater 20(14):4576–4587CrossRefGoogle Scholar
  13. 13.
    Wright PV (1975) British Polym J 7(5):319–327CrossRefGoogle Scholar
  14. 14.
    Polu AR, Rhee HW (2017) Int J Hydrog Energy 42(10):7212–7219CrossRefGoogle Scholar
  15. 15.
    Pitawala J, Navarra MA, Scrosati B, Jacobsson P, Matic A (2014) J Power Sources 245:830–835CrossRefGoogle Scholar
  16. 16.
    Hofmann A, Schulz M, Hanemann T (2013) Electrochim Acta 89:823–831CrossRefGoogle Scholar
  17. 17.
    Weston JE, Steele BCH (1982) Solid State Ionics 7(1):75–79CrossRefGoogle Scholar
  18. 18.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394(6692):456–458CrossRefGoogle Scholar
  19. 19.
    Wieczorek W, Florjanczyk Z, Stevens JR (1995) Electrochim Acta 40:2251–2258CrossRefGoogle Scholar
  20. 20.
    Gerbaldi C, Nair Jijeesh R, Kulandainathan Anbu M, Kumar Senthil R, Chiara F, Piercarlo M, Manuel SA (2014) J Mater Chem A 2:9948–9954CrossRefGoogle Scholar
  21. 21.
    Farrukh I, Daye C, Yeongmin K, Kyung KD (2016) Ultrason Sonochem 31:93–101CrossRefGoogle Scholar
  22. 22.
    Yuzhen H, Qi P, Junwen Z, Xiao F, Li S, Xiaotao F, Jingshu Z, Danni Y, Bo W (2015) ACS Appl Mater Interfaces 7:26608–26613CrossRefGoogle Scholar
  23. 23.
    Saha D, Deng S (2009) Int J Hydrog Energy 34(6):2670–2678CrossRefGoogle Scholar
  24. 24.
    Osada I, de Vries H, Scrosati B, Passerin S (2016) Angew Chem Int Ed 55:500–513CrossRefGoogle Scholar
  25. 25.
    Dhumal Nilesh R, Singh Manish P, Anderson JA, Kiefer J, Kim JH (2016) J Phys Chem C 120:3295–3304CrossRefGoogle Scholar
  26. 26.
    D’Souza L, Prabha D, Divya Shridhar MP, Naik Chandrakant G (2008) Anal Chem Insights 3:135–143PubMedPubMedCentralGoogle Scholar
  27. 27.
    Sim LN, Majid SR, Arof AK (2012) Vib Spectrosc 58:57–66CrossRefGoogle Scholar
  28. 28.
    Kumar TM, Shrikant P, Harish S, Khemraj B, Snehasis J (2015) Pharm Anal Acta 6:1000395Google Scholar
  29. 29.
    Srivastav A, Saxena Subha R, Sunil M, Singh Y (2012) Orient J Chem 28(3):1517–1529CrossRefGoogle Scholar
  30. 30.
    Govind PS, De A, De U (2011) International Journal of Spectroscopy 2011:1–7Google Scholar
  31. 31.
    Singh R, Arora V, Tandon RP, Mansingh A, Chandra S (1999) Synth Met 104(2):137–144CrossRefGoogle Scholar
  32. 32.
    Havriliak S, Negami S (1967) Polymer 8:161–210CrossRefGoogle Scholar
  33. 33.
    Subhojtoti S, Kumar CS, Jiten G, Kumar MA (2014) J Phys D Appl Phys 47(27):275301–275313CrossRefGoogle Scholar
  34. 34.
    Xi Y, Bin Y, Chiang CK, Matsuo M (2007) Carbon 45(6):1302–1309CrossRefGoogle Scholar
  35. 35.
    Kohlrausch R (1847) Prog Anal Phys 123:393–399Google Scholar
  36. 36.
    Hazarika J, Kumar A (2014) Synth Met 198:239–247CrossRefGoogle Scholar
  37. 37.
    Nath AK, Kumar A (2013) Solid State Ionics 253:8–17CrossRefGoogle Scholar
  38. 38.
    Yang H, Zhuang GV, Ross PN (2006) J Power Sources 161(1):573–579CrossRefGoogle Scholar
  39. 39.
    Asheesh K, Raghunandan S, Suresh M, Das Malay K, Kar Kamal K (2017) Journal of Elastomers & Plastics 49(6):513–526CrossRefGoogle Scholar
  40. 40.
    Aziz Shujahadeen B, Woo Thompson J, Kadir MFZ, Ahmed Hameed M (2018) Journal of Science: Advanced Materials and Devices 3:1–17Google Scholar
  41. 41.
    Agrawal RC, Chandra A, Bhatt A, Mahipal YK (2008) New J Phys 10:043023–043033CrossRefGoogle Scholar
  42. 42.
    Roling B, Martiny C, Funke K (1999) J Non-Cryst Solids 249(2-3):201–209CrossRefGoogle Scholar
  43. 43.
    Jonscher AK (1977) Nature 267(5613):673–679CrossRefGoogle Scholar
  44. 44.
    Mariappan CR, Govindaraj G (2002) Mater Sci Eng B 94(1):82–88CrossRefGoogle Scholar
  45. 45.
    Papathanassiou AN, Sakellis I, Grammatikakis J (2010) Appl Phys Lett 97(4):041913CrossRefGoogle Scholar
  46. 46.
    Funke K, Banhatti RD, Bruckner S, Cramer C, Krieger C, Mandanici A, Martiny C, Ross I (2002) Phys Chem Chem Phys 4(14):3155–3167CrossRefGoogle Scholar
  47. 47.
    Park CH, Kim DW, Prakash J, Sun YK (2003) Solid State Ionics 159:111–119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials Research Laboratory, Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations