Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2929–2943 | Cite as

Fabrication and characterization of microtubular solid oxide cell supported with nanostructured mixed conducting perovskite fuel electrode

  • Yun Gan
  • Chunlei Ren
  • Myongjin Lee
  • Chunyang Yang
  • Xingjian Xue
Original Paper
  • 77 Downloads

Abstract

Mixed ionic and electronic conducting (MIEC) perovskites demonstrate advantages over Ni-cermet as fuel electrode materials for solid oxide cells (SOCs). However, SOCs are primarily electrolyte-supported planar designs in literature when MIEC perovskite fuel electrodes are employed, which are relatively easy to fabricate but usually have high electrolyte ohmic resistance. Perovskite fuel electrode-supported designs are rarely studied particularly for microtubular SOCs. In this research, (La0.3Sr0.7)0.9Ti0.9Ni0.1O3-δ-Sm0.2Ce0.8O1.9 (LSTN-SDC) electrode-supported microtubular cell LSTN-SDC/YSZ/(La0.8Sr0.2)0.95MnO3-δ is fabricated and characterized. The LSTN-SDC microtubular substrate is prepared using an in-house built spinneret extrusion system in combination with modified phase inversion method, featuring radially well-aligned microchannels open at the inner surface. A thin YSZ electrolyte of ~15 μm and (La0.8Sr0.2)0.95MnO3-δ electrode of ~25 μm are then fabricated on the substrate, respectively. Upon reducing treatment, nickel is exsolved from LSTN grains and uniformly decorated onto grain surface as Ni nanoparticles, and therefore on inner surface of microchannels in the substrate. With CO/CO2 gas mixture as the fuel, the complicated electro-/chemical reactions are identified in the substrate electrode. The electrolysis process in combination with surface catalytic process of nanostructured electrode substrate leads to highly efficient CO production from CO2 with conversion efficiencies of well above 100%. The electrolysis also facilitates to regenerate surface catalytic functionality of nanostructured electrode substrate. The redox stability advantages of the cell are demonstrated in both alternative reduction (CO)/oxidation (air) atmospheric conditions and reversible operating mode.

Keywords

Microtubular solid oxide cell Modified phase-inversion method Exsolution CO2 electrolysis 

Notes

Funding information

This work was supported by Early Stage Innovations grant #NNX14AB26G under NASA’s Space Technology Research Grants Program and partially supported by the US Department of Energy through National Energy Technology Laboratory under grant number DE-FE0024059.

References

  1. 1.
    Ormerod RM (2003) Chemical Society Review 32(1):17–28CrossRefGoogle Scholar
  2. 2.
    Minh N (2004) Solid State Ionics 174(1-4):271–277CrossRefGoogle Scholar
  3. 3.
    Zhan Z, Barnett SA (2005) Science 308(5723):844–847CrossRefGoogle Scholar
  4. 4.
    Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Science 326(5949):126–129CrossRefGoogle Scholar
  5. 5.
    Torrell M, García-Rodríguez S, Morata A, Penelas G, Tarancón A (2015) Faraday Discuss 182:241–255CrossRefGoogle Scholar
  6. 6.
    Xie K, Zhang Y, Meng G, Irvine JTS (2011) Energy Environ Sci 4(6):2218–2222CrossRefGoogle Scholar
  7. 7.
    Goodliff KE, Troutman P, Craig DA, Caram J, Herrmann N (2016) AIAA SPACE 2016–5456Google Scholar
  8. 8.
    Sanders GB, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne DL, Kleinhenz JE, Peters T (2015) AIAA SPACE 2015 Conference and Exposition, AIAA 2015–4458Google Scholar
  9. 9.
    Kleinhenz JE, Paz A (2017) 10th Symposium on Space Resource Utilization, AIAA 2017–0423Google Scholar
  10. 10.
    Rapp D, Hoffman JA, Hecht M (2015) AIAA SPACE 2015 Conference and Exposition, AIAA 2015–4561Google Scholar
  11. 11.
    Xie Y, Xue X (2013) J Power Sources 241:718–727CrossRefGoogle Scholar
  12. 12.
    Xie Y, Xue X (2012) Solid State Ionics 224:64–73CrossRefGoogle Scholar
  13. 13.
    Zekri HK, Knipper M, Parisi J, Plaggenborg T (2017) Fuel Cells 17(3):359–366CrossRefGoogle Scholar
  14. 14.
    Ma J, Jiang C, Connor PA, Cassidy M, Irvine JTS (2015) J Mater Chem A 3(37):19068–19076CrossRefGoogle Scholar
  15. 15.
    Tao S, Irvine JTS (2003) Nat Mater 2(5):320–323CrossRefGoogle Scholar
  16. 16.
    Huang YH, Dass RI, Xing XL, Goodenough JB (2006) Science 312(5771):254–257CrossRefGoogle Scholar
  17. 17.
    Sengodan S, Choi S, Jun A, Shin TH, Ju YW, Jeong HY, Shin J, Irvine JTS, Kim G (2015) Nat Mater 14(2):205–209CrossRefGoogle Scholar
  18. 18.
    Dong G, Yang C, He F, Jiang Y, Ren C, Gan Y, Lee M, Xue X (2017) RSC Adv 7(37):22649–22661CrossRefGoogle Scholar
  19. 19.
    Atkinson A, Barnett SA, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Nat Mater 3(1):17–27CrossRefGoogle Scholar
  20. 20.
    Kang LS, Park JL, Lee S, Jin YH, Hong HS, Lee CG, Kim BS (2014) J Nanosci Nanotechnol 14(12):8974–8977CrossRefGoogle Scholar
  21. 21.
    Zhan Z, Bierschenk DM, Cronin JS, Barnett SA (2011) Energy Environ Sci 4:3951–3954CrossRefGoogle Scholar
  22. 22.
    Miller EC, Sherman Q, Gao Z, Voorhees PW, Barnett SA (2015) ECS Trans 68(1):1245–1254CrossRefGoogle Scholar
  23. 23.
    Tsekouras G, Neagu D, Irvine JTS (2013) Energy Environ Sci. 6:256–266CrossRefGoogle Scholar
  24. 24.
    Oh TS, Rahani EK, Neagu D, Irvine JTS, Shenoy VB, Gorte RJ, Vohs JM (2015) J Phys Chem Lett 6(24):5106–5110CrossRefGoogle Scholar
  25. 25.
    Huang YH, Liang G, Croft M, Lehtimaki M, Karppinen M, Goodenough JB (2009) Chem Mater 21(11):2319–2326CrossRefGoogle Scholar
  26. 26.
    Bastidas DM, Tao S, Irvine JTS (2006) J Mater Chem 16(17):1603–1605CrossRefGoogle Scholar
  27. 27.
    Ding D, Li X, Lai SY, Gerdes K, Liu M (2014) Energy Environ Sci 7:552–575CrossRefGoogle Scholar
  28. 28.
    Ding H, Ge J, Xue X (2012) Electrochemical and Solid State Letters 15(6):B86–B89CrossRefGoogle Scholar
  29. 29.
    Ren C, Gan Y, Lee M, Yang C, He F, Jiang Y, Dong G, Green RD, Xue X (2016) J Electrochem Soc 163(9):F1115–F1123CrossRefGoogle Scholar
  30. 30.
    Ren C, Gan Y, Yang C, Lee M, Dong G, Xue X (2017) J Electrochem Soc 164(7):F722–F731CrossRefGoogle Scholar
  31. 31.
    Shi J, Xue X (2014) J Appl Electrochem 44(6):683–694CrossRefGoogle Scholar
  32. 32.
    He F, Jin X, Tian T, Ding H, Green RD, Xue X (2015) J Electrochem Soc 162(9):F951–F958CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations