Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2801–2809 | Cite as

Pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 vertically anchored on graphene oxide for high-performance sodium-ion battery anodes

  • Xiaoxuan Ma
  • Na Li
  • Shikun Liu
  • Kun Zhang
  • Caixia Chi
  • Jiupeng ZhaoEmail author
  • Xiaoxu LiuEmail author
  • Yao LiEmail author
Original Paper


In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g−1 after 1000 cycles with a low average fading capacity of 0.15 mAh g−1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g−1 is remained at the current densities of 10.0 A g−1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.


Sandwiched nanoarchitectures Pyrrolic nitrogen-doped carbon MoS2 Sodium-ion battery 



The authors would like to acknowledge support from the National Natural Science Foundation of China (No. 51502057, 51572058, 51307046, 91216123, 51174063), the Natural Science Foundation of Heilongjiang Province (E201436), the International Science & Technology Cooperation Program of China (2013DFR10630, 2015DFE52770), Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20132302110031), Natural Science Foundation of Heilongjiang Province of China (Grant No. E2016062), the China Postdoctoral Science Foundation (General Financial Grant No. 2014M561345), the Heilongjiang Postdoctoral Science Foundation (LBH-Z14105), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the State Education Ministry (No. 20151098), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang province (No. 2015082), the Open Project Program of the Key Laboratory for Photonic and Electric Band Gap Materials of the Ministry of Education of Harbin Normal University (No. PEBM201405), postdoctoral scientific research developmental fund of Henlongjiang Province (LBH-Q14144), the Research Foundation for the Returned Overseas Chinese excellent Scholars of Heilongjiang Province (No. 2015424), National Key Research & Development Program (2016YFB0303903), and the Foundation of Science and Technology on Advanced Composites in Special Environment Laboratory.

Supplementary material

10008_2018_3994_MOESM1_ESM.doc (736 kb)
ESM 1 (DOC 735 kb)


  1. 1.
    Wen M, Liu X, Zhao Y, Liu S, Liu H, Dong Y, Kuang Q, Fan Q (2017) Synthesis of alluaudite-type Na2VFe2(PO4)3/C and its electrochemical performance as cathode material for sodium-ion battery. J Solid State Electrochem 22:891–898CrossRefGoogle Scholar
  2. 2.
    Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929CrossRefPubMedGoogle Scholar
  3. 3.
    Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46(12):3529–3614CrossRefPubMedGoogle Scholar
  4. 4.
    Guo YP, Wei YQ, Li HQ, Zhai TY (2017) Layer structured materials for advanced energy storage and conversion. Small 13(45):1701649CrossRefGoogle Scholar
  5. 5.
    Li L, Zhong B (2017) The design and preparation of the composite with layered spherical structure for Li-S battery. J Solid State Electrochem 22:591–598CrossRefGoogle Scholar
  6. 6.
    Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L (2017) Opening two-dimensional materials for energy conversion and storage: a concept. Adv Energy Mater 7(19):1602684CrossRefGoogle Scholar
  7. 7.
    Ma XX, Liu SK, Zhang K, Liu XS, Hao J, Chi CX, Zhao JP, Liu XX, Li Y (2018) Facile scalable synthesis of ordered macroporous few-layer MoS2 and carbon hybrid nanoarchitectures with sodium-ion batteries. J Mater Sci Mater Electron 29(4):3492–3501CrossRefGoogle Scholar
  8. 8.
    Ma X, Liu X, Zhao J, Hao J, Chi C, Liu X, Yao L, Liu S, Zhang K (2016) Improved cycling stability of MoS2-coated carbon nanotubes on graphene foam as a flexible anode for Lithium-ion batteries. New J Chem 41(2):588–593CrossRefGoogle Scholar
  9. 9.
    Wang X, Weng Q, Yang Y, Bando Y, Golberg D (2016) Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms. Chem Soc Rev 45(15):4042–4073CrossRefPubMedGoogle Scholar
  10. 10.
    Luo C, Lin H, Qi R, Zhong N, Peng H (2017) High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. J Solid State Electrochem 21:2071–2077CrossRefGoogle Scholar
  11. 11.
    Wang T, Chen S, Pang H, Xue H, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy storage. Adv Sci 4(2):1600289CrossRefGoogle Scholar
  12. 12.
    Dou Y, Zhang L, Xu X, Sun Z, Liao T, Dou S (2017) Atomically thin non-layered nanomaterials for energy storage and conversion. Chem Soc Rev 46(23):7338–7373CrossRefPubMedGoogle Scholar
  13. 13.
    Kang W, Wang Y, Xu J (2017) Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J Mater Chem A 5(17):7667–7690CrossRefGoogle Scholar
  14. 14.
    Wang Z, Mi B (2017) Environmental applications of 2D molybdenum disulfide (MoS2) Nanosheets. Environ Sci Technol 51(15):8229–8244CrossRefPubMedGoogle Scholar
  15. 15.
    Shan TT, Xin S, You Y, Cong HP, Yu SH, Manthiram A (2016) Combining nitrogen-doped graphene sheets and MoS2: a unique film-foam-film structure for enhanced Lithium storage. Angew Chem Int Edit 55(41):12783–12788CrossRefGoogle Scholar
  16. 16.
    Lu Y, Zhao Q, Zhang N, Lei K, Li F, Chen J (2016) Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres. Adv Funct Mater 26(6):911–918CrossRefGoogle Scholar
  17. 17.
    Shi Z, Kang W, Xu J, Sun Y, Jiang M, Ng T, Xue H, Yu D, Zhang W, Lee C (2016) Hierarchical nanotubes assembled from MoS2−carbon monolayer sandwiched superstructure nanosheets for high-performance sodium ion batteries. Nano Energy 22:27–37CrossRefGoogle Scholar
  18. 18.
    Oakes L, Carter R, Hanken T, Cohn AP, Share K, Schmidt B, Pint C (2016) Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat Commun 7:11796CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stephenson T, Li Z, Olsen B, Mitlin D (2013) Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites. Energy Environ Sci 7(1):209–231CrossRefGoogle Scholar
  20. 20.
    Zhang K, Wang YM, Ma XX, Zhang HC, Hou S, Zhao J, Li XG, Qiang LS, Li Y (2017) Three dimensional molybdenum oxide/polyaniline hybrid nanosheet networks with outstanding optical and electrochemical properties. New J Chem 41(19):10872–10879CrossRefGoogle Scholar
  21. 21.
    Li H, Li W, Ma L, Chen W, Wang J (2009) Electrochemical lithiation/delithiation performances of 3D flowerlike MoS2 powders prepared by ionic liquid assisted hydrothermal route. J Alloys Compd 471(1):442–447CrossRefGoogle Scholar
  22. 22.
    Teng Y, Zhao H, Zhang Z, Li Z, Xia Q, Zhang Y, Zhao L, Du X, Du Z, Lv P, Swierczek K (2016) MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 10(9):8526–8535CrossRefPubMedGoogle Scholar
  23. 23.
    Wu X, Xu X, Qi M, Li W, Bai J, Wang L (2013) Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon 62:330–336CrossRefGoogle Scholar
  24. 24.
    Jiang H, Ren D, Wang H, Hu Y, Guo S, Yuan H, Hu P, Zhang L, Li C (2015) 2D monolayer MoS2-carbon interoverlapped superstructure: engineering ideal atomic interface for lithium ion storage. Adv Mater 27(24):3687–3695CrossRefPubMedGoogle Scholar
  25. 25.
    Shi Y, Zhou W, Lu AY, Fang W, Lee Y, Hsu A, Kim S, Kim K, Yang H, Li L (2012) Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett 12(6):2784–2791CrossRefPubMedGoogle Scholar
  26. 26.
    David L, Bhandavat R, Singh G (2014) MoS2/graphene composite paper for sodium-ion battery electrodes. ACS Nano 8(2):1759–1770CrossRefPubMedGoogle Scholar
  27. 27.
    Ataca C, Topsakal M, Aktürk E, Ciraci S (2011) A comparative study of lattice dynamics of three- and two-dimensional MoS2. J Phys Chem C 115(33):16354–16361CrossRefGoogle Scholar
  28. 28.
    Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22(7):1385–1390CrossRefGoogle Scholar
  29. 29.
    Huang X, Zeng Z, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 44(5):1934–1946CrossRefGoogle Scholar
  30. 30.
    Toth PS, Velický M, Bissett MA, Slater T, Savjani N, Rabiu A, Rakowski A, Brent J, Haigh S, OBrien P (2016) Asymmetric MoS2/graphene/metal sandwiches: preparation, characterization, and application. Adv Mater 28(37):8256–8264CrossRefPubMedGoogle Scholar
  31. 31.
    Park J, Kim JS, Park JW, Nam T, Kim K, Ahn J, Wang G, Ahn H (2013) Discharge mechanism of MoS2, for sodium ion battery: electrochemical measurements and characterization. Electrochim Acta 92(1):427–432CrossRefGoogle Scholar
  32. 32.
    Zhao L, Hong C, Lin L, Wu H, Su Y, Zhang X, Liu A (2017) Controllable nanoscale engineering of vertically aligned MoS2 ultrathin nanosheets by nitrogen doping of 3D graphene hydrogel for improved electrocatalytic hydrogen evolution. Carbon 116:223–231CrossRefGoogle Scholar
  33. 33.
    Rao D, Wang Y, Zhang L, Yao S, Qian X, Xi X, Xiao K, Deng K, Shen X, Lu R (2016) Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution. Carbon 110:207–214CrossRefGoogle Scholar
  34. 34.
    González JR, Alcántara R, Tirado JL, Fielding A, Dryfe R (2017) Electrochemical interaction of few-layer molybdenum disulfide composites vs sodium: new insights on the reaction mechanism. Chem Mater 29(14):5886–5895CrossRefGoogle Scholar
  35. 35.
    Zhang L, Tang Y, Wang Y, Duan Y, Xie D, Wu C, Cui L, Li Y, Ning X, Shan Z (2016) In situ TEM observing structural transitions of MoS2 upon sodium insertion and extraction. RSC Adv 6(98):96035–96038CrossRefGoogle Scholar
  36. 36.
    Li Q, Yao Z, Wu J, Mitra S, Hao S, Sahu T, Li Y, Wolverton C, Dravid V (2017) Intermediate phases in sodium intercalation into MoS2 Nanosheets and their implications for sodium-ion batteries. Nano Energy 38:342–349CrossRefGoogle Scholar
  37. 37.
    Ren W, Zhang H, Guan C, Cheng C (2017) Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability. Adv Funct Mater 27(32):1702116CrossRefGoogle Scholar
  38. 38.
    Wang X, Li G, Seo M, Hassan F, Hoque M, Chen Z (2016) Sulfur atoms bridging few-layered MoS2 with S-doped graphene enable highly robust anode for Lithium-ion batteries. Adv Energy Mater 5(23):1501106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Heilongjiang University of Science and TechnologyHarbinPeople’s Republic of China
  3. 3.Center for Composite Materials and StructureHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations