Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2959–2964 | Cite as

Lithium ion conductivity of solid solutions based on Li8ZrO6

  • Mariya S. Shchelkanova
  • Georgi Sh. Shekhtman
  • Anastasia V. Kalashnova
  • Olga G. Reznitskikh
Original Paper

Abstract

Lithium ion conductivity of lithium hexaoxozirconate Li8ZrO6 doped by Mg2+, Sr2+, Nb5+, V5+, and Ce4+ cations was studied using impedance spectroscopy. The NMR data indicate that in the low-temperature region, lithium ion migration takes place by exchange of Li+ among tetra- and octahedral positions. Data of Raman spectroscopy suggest that the potential reason for the sharp increase of Li8ZrO6 and its solid solutions’ conductivity near 700 K may be melting of LiOH which occurs as a result of interaction between samples and atmospheric moisture.

Keywords

Solid electrolytes Lithium ion conductivity Lithium hexaoxozirconate Lithium batteries Raman spectroscopy Nuclear magnetic resonance 

Notes

Acknowledgments

The authors are grateful to S.V. Plaksin and E.G. Vovkotrub. The research has been carried out with the equipment of the Shared Access Center “Composition of Compounds” of the Institute of High-Temperature Electrochemistry of Ural Branch of RAS, Yekaterinburg, Russian Federation.

References

  1. 1.
    Cao С, Li ZB, Wang XL, Zhao XB, Han WQ (2014) Recent advances in inorganic solid electrolytes for lithium batteries. Front Energy Res 2.  https://doi.org/10.3389/fenrg.2014.00025
  2. 2.
    Dumon A, Huang M, Shen Y, Nan CW (2013) High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet. Solid State Ionics 243:36–41CrossRefGoogle Scholar
  3. 3.
    Hong HY-P (1978) Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater Res Bull 13(2):117–124CrossRefGoogle Scholar
  4. 4.
    Aono H, Sugimoto E, Sadaoka Y, Imanaka N, Adachi G (1990) Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J Electrochem Soc 137(4):1023–1027CrossRefGoogle Scholar
  5. 5.
    Fu J (1997) Fast Li+ ion conducting glass-ceramics in the system Li2O–Al2O3–GeO2–P2O5. Solid State Ionics 104(3-4):191–194CrossRefGoogle Scholar
  6. 6.
    Hellstrom EE, Gool van W (1981) Li ion conduction in Li2ZrO3, Li4ZrO4, and LiScO2. Solid State Ionics 2(1):59–64CrossRefGoogle Scholar
  7. 7.
    Moiseev GK, Vatolin NA (2003) Interaction of lithium zirconate with lithium under equilibrium conditions. Dokl Phys Chem 388(4/6):33–37CrossRefGoogle Scholar
  8. 8.
    Delmas C, Maazaz A, Guillen F, Fouassier C, Reau JM, Hagenmuller P (1979) Des conducteurs ioniques pseudo-bidimensionnels: Li8MO6 (M = Zr, Sn), Li7LO6 (L = Nb, Ta) et Li6In206. Mat Res Bull 14(5):619–625CrossRefGoogle Scholar
  9. 9.
    Pantyukhina MI, Shchelkanova MS, Stepanov AP, Buzlukov AL (2010) Investigation of ion transport in Li8ZrO6 and Li 6Zr2O7 solid electrolytes. Bull Russ Acad Sci: Phys 74(5):653–655CrossRefGoogle Scholar
  10. 10.
    Shchelkanova MS, Pantyukhina MI, Kalashnova AV, Plaksin SV (2016) Electrochemical properties of Li8 − 2xMxZrO6 (M = Mg, Sr) solid electrolytes. Solid State Ionics 290:12–17CrossRefGoogle Scholar
  11. 11.
    Shchelkanova МS, Pantyukhina MI, Antonov BD, Kalashnova AV (2014) Produce new solid electrolytes based on the Li8-xZr1-xVxO6. Butlerov Commun (in Russian) 38:96–102Google Scholar
  12. 12.
    Pantyukhina MI, Shchelkanova МS, Plaksin SV (2013) Synthesis and electrochemical properties of Li8-xZr1-xNbxO6 solid solutions. Phys Solid State 55(4):707–709CrossRefGoogle Scholar
  13. 13.
    Andreev OL, Pantyukhina MI, Martem'yanova ZS, Batalov NN (2003) Ionic conductivity and thermodynamic properties of solid electrolytes based on lithium orthozirconate. Electrochemical Energetic 3:86–90 (in Russian)Google Scholar
  14. 14.
    Pantyukhina MI, Andreev OL, Martem'yanova ZS, Batalov NN (2004) Cation conductivity of Li8ZrO6–LiYO2 solid solutions. Inorg Mater 40(4):404–406CrossRefGoogle Scholar
  15. 15.
    Huang S, Fang Y, Wang B, Wilson BE, Tran N, Truhlar DG, Stein A (2016) Conduction and surface effects in cathode materials: Li8ZrO6 and doped Li8ZrO6. J Phys Chem C 120(18):9637–9649CrossRefGoogle Scholar
  16. 16.
    Pantyukhina MI, Shchelkanova МS, Plaksin SV (2013) Electrochemical properties of solid solutions in the Li8Zr1-xCexO6 system. Russ J Electrochem 49(2):144–148CrossRefGoogle Scholar
  17. 17.
    Pantyukhina MI, Shchelkanova МS, Plaksin SV (2010) Ionic conduction of Li8 - 2x Mg x ZrO6 solid solutions. Russ J Electrochem 46:831–834CrossRefGoogle Scholar
  18. 18.
    Pantyukhina MI, Shchelkanova МS, Plaksin SV (2012) Ionic conductivity of Li8-2xSrxZrO6. Inorg Mater 48(4):382–385CrossRefGoogle Scholar
  19. 19.
    PDF2 (JCPDS-ICCD) (Joint committee of powder diffraction standards)Google Scholar
  20. 20.
    Raistrick ID, Ho C, Huggins AR (1976) Lithium ion conduction in LiAlO4, Li5GaO4, and Li6ZnO4. Mater Res Bull 11(8):953–958CrossRefGoogle Scholar
  21. 21.
    Ramdani A, Brice JF (1981) Etude des proprietes de conduction electrique du Ferrite Li5FeO4. Ann Chim 6:569–578Google Scholar
  22. 22.
    Nagano N, Greenblatt M (1987) Structural and electrical properties of Li5TlO4. Solid State Ionics 24(2):169–174CrossRefGoogle Scholar
  23. 23.
    Muhle C, Dinnebier RE, van Wullen L, Schwering G, Jansen M (2004) New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi). Inorg Chem 43(3):874–881CrossRefPubMedGoogle Scholar
  24. 24.
    Ohno H, Konishi S, Nagasaki T, Kurasawa T, Katsuta H, Watanabe H (1985) Electrical conductivity of a sintered pellet of octalithium zirconate. J Nucl Mat 132(3):222–230CrossRefGoogle Scholar
  25. 25.
    Biefeld RM, Johnson RT (1979) The effects of Li2SO4 addition, moisture, and LiOH on the ionic conductivity of Li5AIO4. J Solid State Chem 29(3):393–399CrossRefGoogle Scholar
  26. 26.
    Johnson RT, Biefeld RM (1979) Ionic conductivity of Li5AlO4 and Li5GaO4 in moist air environments: potential humidity sensors. Mat. Res. Bull. 14(4):537–542CrossRefGoogle Scholar
  27. 27.
    Pantyukhina MI, Andreev OL, Antonov BD, Batalov NN (2002) Synthesis and electrical properties of lithium zirconates. Russ J Inorg Chem 47:1630–1633Google Scholar
  28. 28.
    Scholder R, Räde D, Schwarz H (1968) Uber Zirkonate, Hafnate und Thorate von Barium, Strontium, Lithium und Natrium. Z Anorg Allg Chem Bd 362(3-4):149–168CrossRefGoogle Scholar
  29. 29.
    Charton S, Maupoix C, Delaunay F, Saviot L, Bernard F (2016) Experimental investigation on lithium hydride hydrolysis. Thesis, Lyon (France), WHEC16Google Scholar
  30. 30.
    Brooker MH, Bates JB (1971) Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3. J Chem Phys 54(11):4788–4791CrossRefGoogle Scholar
  31. 31.
    Harbach F, Ficher F (1975) Raman spectra of lithium hydroxide single crystals. J Phys Cha Solids 36:60l–603lGoogle Scholar
  32. 32.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  33. 33.
    Johnson RT, Biefeld RM, Keck JD (1977) Ionic conductivity in Li5AlO4 and LiOH. Mat Res Bull 12(6):577–587CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of High-Temperature ElectrochemistryUral Branch of RASEkaterinburgRussian Federation
  2. 2.Institute of Solid State ChemistryUral Branch of RASYekaterinburgRussian Federation

Personalised recommendations