Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2821–2828 | Cite as

Electrochemical behavior of CoSb3 in sulfuric and oxalic acids over the potential range 0 to 40 V

  • Delphine Veys-RenauxEmail author
  • Richard Drevet
  • Carine Petitjean
  • Lionel Aranda
  • Nicolas David
  • Patrice Berthod
Original Paper


The electrochemical behavior of pure Co, pure Sb, and CoSb3 has been investigated over a large anodic potential range (0 to 40 V) in two acids, i.e., oxalic acid or sulfuric acid at different concentrations (0.01 to 1 M). Potentiodynamic polarizations performed on CoSb3 plates reveal the possible formation of a passive layer between 1 and 3 V (vs SCE), on a passivation plateau. The oxidation of CoSb3 at 2 V in sulfuric and oxalic acids results in the growth of an anodic conversion layer. This coating is mainly made of a porous layer of amorphous antimony oxides due to dealloying of CoSb3. In the specific case of oxalic acid, rods of crystallized oxalates are tangled between the oxide sheets.


Intermetallics Thin films Anodization Dealloying SEM 



The French National Research Agency (ANR) is gratefully acknowledged for financial support of the post-doctoral position of Richard Drevet in the project Nanoskut (ANR-12-PRGE-0008-01).


  1. 1.
    Kawaharada Y, Kurosaki K, Uno M, Yamanaka S (2001) Thermoelectric properties of CoSb3. J Alloy Compd 315(1-2):193–197CrossRefGoogle Scholar
  2. 2.
    Hara R, Inoue S, Kaibe HT, Sano S (2003) Aging effects of large-size n-type CoSb3 prepared by spark plasma sintering. J Alloy Compd 349(1-2):297–301CrossRefGoogle Scholar
  3. 3.
    Godlewska E, Zawadzka K, Adamczyk A, Mitoraj M, Mars K (2010) Degradation of CoSb3 in air at elevated temperatures. Oxid Met 74(3-4):113–124CrossRefGoogle Scholar
  4. 4.
    Leszczynski J, Wojciechowski KT, Malecki AL (2011) Studies on thermal decomposition and oxidation of CoSb3. J Therm Anal Calorim 105(1):211–222CrossRefGoogle Scholar
  5. 5.
    Zhao D, Tian C, Liu Y, Zhan C, Chen L (2011) High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test. J Alloy Compd 509(6):3166–3171CrossRefGoogle Scholar
  6. 6.
    Godlewska E, Zawadzka K, Mars K, Mania R, Wojciechowski K, Opoka A (2010) Protective properties of magnetron-sputtered Cr-Si layers on CoSb3. Oxid Met 74(3-4):205–213CrossRefGoogle Scholar
  7. 7.
    Zhao D, Zuo M, Wang Z, Teng X, Geng H (2014) Protective properties of magnetron-sputtered Ti coating on CoSb3 thermoelectric material. Appl Surf Sci 305:86–92CrossRefGoogle Scholar
  8. 8.
    Xia X, Huang X, Li X, Gu M, Qiu P, Liao J, Tang Y, Bai S, Chen L (2014) Preparation and structural evolution of Mo/SiOx protective coating on CoSb3-based filled skutterudite thermoelectric material. J Alloy Compd 604:94–99CrossRefGoogle Scholar
  9. 9.
    Zhao D, Zuo M, Teng X, Geng H (2014) Thermal aging behavior of CoSb3 with protective Mo coating. Mater Sci Forum 787:215–220CrossRefGoogle Scholar
  10. 10.
    Zhao D, Bai S, Ma Q, Zuo M, Teng X (2015) Protective properties of YSZ/Ti film deposited on CoSb3 thermoelectric material. Corros Sci 98:163–169CrossRefGoogle Scholar
  11. 11.
    Zhao D, Wu D, Niang J, Zuo M (2017) Protective properties of various coatings of CoSb3 thermoelectric material. J Electron Mater 46(5):3036–3042CrossRefGoogle Scholar
  12. 12.
    Zawadzka K, Godlewska E, Mars K, Nocun M, Kryshtal A, Czyrska-Filemonowicz A (2017) Enhancement of oxidation resistance of CoSb3 thermoelectric material by glass coating. Mater Design 119:65–75CrossRefGoogle Scholar
  13. 13.
    Pavlov D, Bojinov M, Laitinen T, Sundholm G (1991) Electrochemical behaviour of the antimony electrode in sulphuric acid solutions—II formation and properties of the primary anodic layer. Electrochim Acta 36(14):2087–2092CrossRefGoogle Scholar
  14. 14.
    Bojinov M, Kanazirski I, Girginov A (1995) Anodic film growth on antimony in H3PO4 solutions. Electrochim Acta 40(7):873–878CrossRefGoogle Scholar
  15. 15.
    Mogoda AS, Abd El-Haleem TM (2003) Anodic oxide formation on antimony and its currentless dissolution in sulphuric acid containing some monocarboxylic acids. Thin Solid Films 441(1-2):6–12CrossRefGoogle Scholar
  16. 16.
    Linarez Perez OE, Perez MA, Teijelo ML (2009) Characterization of the anodic growth and dissolution of antimony oxide films. J Electroanal Chem 632(1-2):64–71CrossRefGoogle Scholar
  17. 17.
    Konno Y, Tsuji E, Skeldon P, Thompson GE, Habazaki H (2012) Factors influencing the growth behavior of nanoporous anodic films on iron under galvanostatic anodizing. J Solid State Electrochem 16(12):3887–3896CrossRefGoogle Scholar
  18. 18.
    Gui Q, Yu D, Zhang S, Xiao H, Yang C, Song Y, Zhu X (2014) Influence of anodizing voltage mode on the nanostructure of TiO2 nanotubes. J Solid State Electrochem 18(1):141–148CrossRefGoogle Scholar
  19. 19.
    Veys-Renaux D, Rocca E (2015) Initial stages of multi-phased aluminium alloys anodizing by MAO: micro-arc conditions and electrochemical behavior. J Solid State Electrochem 19(10):3121–3129CrossRefGoogle Scholar
  20. 20.
    Veys-Renaux D, Chahboun N, Rocca E (2016) Anodizing of multiphase aluminium alloys in sulfuric acid: in-situ electrochemical behaviour and oxide properties. Electrochim Acta 211:1056–1065CrossRefGoogle Scholar
  21. 21.
    Kaduk JA, Toft MA, Golab JT (2010) Crystal structure of antimony oxalate hydroxide Sb(C2O4)OH. Powder Diffract 25(01):19–24CrossRefGoogle Scholar
  22. 22.
    Hakamada M, Mabuchi M (2009) Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J Alloy Compd 479(1-2):326–329CrossRefGoogle Scholar
  23. 23.
    Gan YL, Yang Y, Du JJ, Zhang RH, Dai ZX, Zhou XW (2015) Studies on the synthesis, dealloying, and electrocatalytic properties of CoPd nanocatalysts. J Solid State Electrochem 19(6):1799–1805CrossRefGoogle Scholar
  24. 24.
    Choi WS, Chang W, Shin HS (2014) Hollow nanodendritic nickel oxide networks prepared by dealloying of nickel-copper alloys. J Solid State Electrochem 18(2):427–433CrossRefGoogle Scholar
  25. 25.
    Zhu SL, He JL, Zhang XJ, Cui ZD, Pi LL (2011) Ti oxide nano-porous surface structure prepared by dealloying of Ti-Cu amorphous alloy. Electrochem Commun 13(3):250–253CrossRefGoogle Scholar
  26. 26.
    Li G, Zhang X, Song X, Sun Z, Feng W (2015) Preparation of nanoporous Ag@TiO2 ribbons through dealloying and their electrocatalytic properties. J Solid State Electrochem 19(4):967–974CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Delphine Veys-Renaux
    • 1
    Email author
  • Richard Drevet
    • 1
  • Carine Petitjean
    • 1
  • Lionel Aranda
    • 1
  • Nicolas David
    • 1
  • Patrice Berthod
    • 1
  1. 1.Institut Jean LamourUMR 7198 CNRS-Université de Lorraine, Campus Artem, allée André GuinierNancy cedexFrance

Personalised recommendations