Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2775–2778 | Cite as

Theory of cyclic voltammetry for electrochemical nucleation and growth

  • Vladimir A. Isaev
  • Olga V. Grishenkova
  • Yurii P. Zaykov
Original Paper
  • 122 Downloads

Abstract

The theory of cyclic voltammetry for processes of 3D nucleation, diffusion-controlled growth, and dissolution is proposed. The cases of single metal cluster formation and multiple nucleation are studied. The main features of cyclic voltammograms are analyzed: current increase on forward scan during nucleation, nucleation loop, maximum cathode current on reverse scan, and anodic peak of metal stripping.

Keywords

Cyclic voltammetry Nucleation Growth Nucleation loop 

Notes

Funding information

The study is supported by Russian Science Foundation grant (project No. 16-13-00061).

References

  1. 1.
    Fletcher S, Halliday CS, Gates D, Westcott M, Lwin T, Nelson G (1983) The response of some nucleation/growth processes to triangular scans of potential. J Electroanal Chem 159:267–285CrossRefGoogle Scholar
  2. 2.
    Pritzker MD (1988) Voltammetric response for the diffusion-controlled electrodeposition onto growing hemispherical nuclei. J Electroanal Chem 243:57–80CrossRefGoogle Scholar
  3. 3.
    Mirkin MV, Nilov AP (1990) Three-dimensional nucleation and growth under controlled potential. J Electroanal Chem 283:35–51CrossRefGoogle Scholar
  4. 4.
    Velmurugan J, Noёl J-M, Nogala W, Mirkin MV (2012) Nucleation and growth of metal on nanoelectrodes. Chem Sci 3:3307–3314CrossRefGoogle Scholar
  5. 5.
    Velmurugan J, Noёl J-M, Mirkin MV (2014) Nucleation and growth of mercury on Pt nanoelectrodes at different overpotentials. Chem Sci 5:189–194CrossRefGoogle Scholar
  6. 6.
    Isaev VA, Grishenkova OV, Kosov AV, Semerikova OL, Zaykov YP (2017) On the theory of cyclic voltammetry for formation and growth of single metal cluster. J Solid State Electrochem 21:787–791CrossRefGoogle Scholar
  7. 7.
    Brainina KZ, Galperin LG, Galperin AL (2010) Mathematical modeling and numerical simulation of metal nanoparticles electrooxidation. J Solid State Electrochem 14:981–988CrossRefGoogle Scholar
  8. 8.
    Guntsov AV (2012) Diffusive problem of Stephan and its solution for processes of electrodissolution of semispherical nuclei of the deposit. J Solid State Electrochem 16:2309–2314CrossRefGoogle Scholar
  9. 9.
    Toh HS, Batchelor-McAuley C, Tschulik K, Uhlemann M, Crossley A, Compton RG (2013) The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale 5:4884–4893CrossRefPubMedGoogle Scholar
  10. 10.
    Petrii OA (2015) Electrosynthesis of nanostructures and nanomaterials. Russ Chem Rev 84(2):159–193CrossRefGoogle Scholar
  11. 11.
    Hasse U, Fletcher S, Scholz F (2006) Nucleation-growth kinetics of the oxidation of silver nanocrystals to silver halide crystals. J Solid State Electrochem 10:833–840CrossRefGoogle Scholar
  12. 12.
    Isaev VA, Grishenkova OV, Semerikova OL, Kosov AV, Zaykov YP (2016) Nucleation and growth of metal nanocrystals during electrocrystallization in melts. Russ Metall (Metally) 2016(8):742–745CrossRefGoogle Scholar
  13. 13.
    Valov I, Staikov G (2013) Nucleation and growth phenomena in nanosized electrochemical systems for resistive switching memories. J Solid State Electrochem 17:365–371CrossRefGoogle Scholar
  14. 14.
    Li X, Batchelor-Mcauley C, Whitby SAI, Tschulik K, Shao L, Compton RG (2016) Single nanoparticle voltammetry: contact modulation of the mediated current. Angew Chem Int Ed 55:4296–4299CrossRefGoogle Scholar
  15. 15.
    Staikov G (2016) Nanoscale electrodeposition of low-dimensional metal phases and clusters. Nanoscale 8:13880–13892CrossRefPubMedGoogle Scholar
  16. 16.
    Isaev VA (2007) Electrochemical phase formation (in Russian). UB, Russian Academy of Science, EkaterinburgGoogle Scholar
  17. 17.
    Isaev VA, Grishenkova OV (2001) Kinetics of electrochemical nucleation and growth. Electrochem Commun 3:500–504CrossRefGoogle Scholar
  18. 18.
    Hills GJ, Schiffrin DJ, Thompson J (1974) Electrochemical nucleation from molten salts—I. Diffusion controlled electrodeposition of silver from alkali molten nitrates. Electrochim Acta 19:657–670CrossRefGoogle Scholar
  19. 19.
    Fletcher S (1983) Electrochemical deposition of hemispherical nuclei under diffusion control. Some theoretical considerations. J Chem Soc Faraday Trans 1(79):467–479CrossRefGoogle Scholar
  20. 20.
    Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer, BostonGoogle Scholar
  21. 21.
    Isaev VA, Grishenkova OV (2014) Galvanostatic phase formation. J Solid State Electrochem 18:2383–2386CrossRefGoogle Scholar
  22. 22.
    Isaev VA, Grishenkova OV, Kosov AV, Semerikova OL, Zaykov YP (2017) Mathematical modeling of the potentiodynamic and galvanostatic phase formation in the melts. Russ Metallurgy (Metally) 2017(2):146–151CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of High Temperature ElectrochemistryUral Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations