Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2747–2755 | Cite as

Hierarchical porous CoMn2O4 microspheres with sub-nanoparticles as advanced anode for high-performance lithium-ion batteries

  • Hongfang JiuEmail author
  • Na Ren
  • Liya Jiang
  • Qing Zhang
  • Yuying Gao
  • Yajuan Meng
  • Lixin Zhang
Original Paper


To deal with the large volume change for lithium-ion batteries (LIBs), we illustrate the synthesis of CoMn2O4 microspheres with sub-nanoparticles by a hydrothermal method followed by thermal treatment. The size of microsphere is approximately 2.2 μm, and the sub-nanoparticle is about 17 nm. There is sufficient void space between CoMn2O4 microspheres with sub-nanoparticles for ensuring the well structural integrity. As advanced anode for LIBs, CoMn2O4 microspheres display stable specific capacity retention of 772 mAh g−1 over 500 cycles at a current density of 100 mA g−1. Such a kind of structure is beneficial for enhanced rate and cycling capabilities in LIBs applications, which could increase contact area between electrolyte and active materials, short path for lithium ions and electrons and accommodate the volume change with additional void space during cycling. It has a great application prospect for use as electrochemical energy storage because of the enhanced performance.


CoMn2O4 microspheres Porous Nanoparticles Anode Lithium-ion batteries 


Funding information

This work was supported by the Shanxi Provincial Natural Science Foundation of China (grant numbers 2015011016) and Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (grant numbers CZL201505).


  1. 1.
    Zhao B, Ran R, Liu M, Shao Z (2015) A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: the latest advancements and future perspectives. Mat Sci Eng R 98:1–71CrossRefGoogle Scholar
  2. 2.
    Al-Zareer M, Dincer L, Rosen MA (2017) Novel thermal management system using boiling cooling for high powered lithium-ion battery packs for hybrid electric vehicles. J Power Sources 363:291–303CrossRefGoogle Scholar
  3. 3.
    Yang R, Xiong R, He H, Mu H, Wang C (2017) A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles. Appl Energ 207:336–345CrossRefGoogle Scholar
  4. 4.
    Rong H, Xu M, Xing L, Li W (2014) Enhanced cyclability of LiNi0.5Mn1.5O4 cathode in carbonate based electrolyte with incorporation of tris(trimethylsilyl)phosphate (TMSP). J Power Sources 261:148–155CrossRefGoogle Scholar
  5. 5.
    Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui D (2017) Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J Mater Chem A 5(37):19521–19540CrossRefGoogle Scholar
  6. 6.
    Chen H, Liu A, Liang S, Zhang X, Mu J, Bai Y, Hou J (2015) Facile synthesis of three-dimensional hierarchical Co3O4 peony-like microspheres and their lithium storage performance. Superlattice Microst 83:538–548CrossRefGoogle Scholar
  7. 7.
    Uchaker E, Cao G (2014) Mesocrystals as electrode materials for lithium-ion batteries. Nano Today 9(4):499–524CrossRefGoogle Scholar
  8. 8.
    Xue H, Yu DYW, Qing J, Yang X, Xu J, Li Z, Sun M, Kang W, Tang Y, Lee C-S (2015) Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. J Mater Chem A 3(15):7945–7949CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Wang J, Chen C, Ma T, Chen J (2017) Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries. Nano Res 10(12):4245–4255CrossRefGoogle Scholar
  10. 10.
    Wang G, Wen Z, Du L, Yang Y-E, Li S, Sun J, Ji S (2017) Hierarchical Ti-Nb oxide microspheres with synergic multiphase structure as ultra-long-life anode materials for lithium-ion batteries. J Power Sources 367:106–115CrossRefGoogle Scholar
  11. 11.
    Li J, Yan D, Lu T, Yao Y, Pan L (2017) An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J 325:14–24CrossRefGoogle Scholar
  12. 12.
    Zhang T, Qiu H, Zhang M, Fang Z, Zhao X, Wang L, Chen G, Wei Y, Yue H, Wang C, Zhang D (2017) A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon 123:717–715CrossRefGoogle Scholar
  13. 13.
    Deng S, Luo Z, Liu Y, Lou X, Lin C, Yang C, Zhao H, Zheng P, Sun Z, Li J, Wang N, Wu H (2017) Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J Power Sources 362:250–257CrossRefGoogle Scholar
  14. 14.
    Wang N, Ma X, Xu H, Chen L, Yue J, Niu F, Yang J, Qian Y (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193–199CrossRefGoogle Scholar
  15. 15.
    Cheng J, Lu Y, Qiu K, Yan H, Xu J, Han L, Liu X, Luo J, Kim J-K, Luo Y (2015) Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dual-functionalities for high performance supercapacitors and li-ion batteries. Sci Rep 5(1):12099CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504CrossRefGoogle Scholar
  17. 17.
    Ye P, Dong H, Xu Y, Zhao C, Liu D (2018) NiCo2O4 surface coating Li[Ni0.03Mn1.97]O4 micro-/nano-spheres as cathode material for high-performance lithium ion battery. Appl Surf Sci 428:469–477CrossRefGoogle Scholar
  18. 18.
    Ahuja P, Sahu V, Ujjain SK, Sharma RK, Singh G (2014) Performance evaluation of asymmetric supercapacitor based on cobalt manganite modified graphene nanoribbons. Electrochim Acta 146:429–436CrossRefGoogle Scholar
  19. 19.
    Wu T, Tu F, Liu S, Zhuang S, Jin G, Pan C (2013) MnO nanorods on graphene as an anode material for high capacity lithium ion batteries. J Mater Sci 49:1861–1867CrossRefGoogle Scholar
  20. 20.
    Pal P, Giri AK, Mahanty S, Panda AB (2014) Morphology-mediated tailoring of the performance of porous nanostructured Mn2O3 as an anode material. CrystEngComm 16(46):10560–10568CrossRefGoogle Scholar
  21. 21.
    Song MS, Cho YJ, Yoon DY, Nahm S, Oh SH, Woo K, Ko JM, Cho WI (2014) Solvothermal synthesis of ZnMn2O4 as an anode material in lithium ion battery. Electrochim Acta 137:266–272CrossRefGoogle Scholar
  22. 22.
    Hwang SM, Kim SY, Kim JG, Lee J-W, Park M-S, Kim Y-J, Shahabuddin M, Yamauchi, Kim JH (2015) Electrospun manganese-cobalt oxide hollow nanofibres synthesized via combustion reactions and their lithium storage performance. Nano 7:8351–8355Google Scholar
  23. 23.
    Liu Y, Zhang B, Feng J, Xiong S (2015) General formation of Mn-based transition metal oxide twin-microspheres with enhanced lithium storage properties. RSC Adv 5(34):26863–26871CrossRefGoogle Scholar
  24. 24.
    Zhang LX, Wang YL, Jiu HF, Zheng WH, Chang JX, He GF (2015) Controllable synthesis of spinel nano-CoMn2O4 via a solvothermal carbon templating method and its application in lithium ion batteries. Electrochim Acta 182:550–558CrossRefGoogle Scholar
  25. 25.
    Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9(3):1002–1006CrossRefPubMedGoogle Scholar
  26. 26.
    Yuan J, Chen C, Hao Y, Zhang X, Agrawal R, Wang C, Li X, Hao Y, Liu B, Li Q, Xie T (2017) Three-dimensionally porous CoMn2O4 thin films grown on Ni foams for high-performance lithium-ion battery anodes. J Mater Sci 52(10):5751–5758CrossRefGoogle Scholar
  27. 27.
    Xiong S, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater 22(4):861–871CrossRefGoogle Scholar
  28. 28.
    Wang B, Cheng JL, Wu YP, Wang D, He DN (2012) Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem Commun 23:5–8CrossRefGoogle Scholar
  29. 29.
    Courtel FM, Duncan H, Abu-Lebdeh Y, Davidson IJ (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J Mater Chem 21(27):10206–10218CrossRefGoogle Scholar
  30. 30.
    Zhang W, Wu ZY, Jiang HL, Yu SH (2014) Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J Am Chem Soc 136(41):14385–14388CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou M, Yang C, Chan KY (2014) Structuring porous iron-nitrogen-doped carbon in a core/shell geometry for the oxygen reduction reaction. Adv Energy Mater 4(18):1400840CrossRefGoogle Scholar
  32. 32.
    Zhang Y, Gong Q, Li L, Yang H, Li Y, Wang Q (2014) MoSe2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Res 8:1108–1115CrossRefGoogle Scholar
  33. 33.
    Du J, Chen C, Cheng F, Chen J (2015) Rapid synthesis and efficient electrocatalytic oxygen reduction/evolution reaction of CoMn2O4 nanodots supported on graphene. Inorg Chem 54(11):5467–5474CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang L, He G, Lei S, Qi G, Jiu H, Wang J (2016) Hierarchical hollow microflowers constructed from mesoporous single crystalline CoMn2O4 nanosheets for high performance anode of lithium ion battery. J Power Sources 326:505–513CrossRefGoogle Scholar
  35. 35.
    Fu YY, Lu X, Zhao WK, Zhang YX, Yang YH, Quan HL, Xu XT, Wang F (2015) Spinel CoMn2O4 nanosheet arrays grown on nickel foam for high-performance supercapacitor electrode. Appl Surf Sci 357:2013–2021CrossRefGoogle Scholar
  36. 36.
    Cheng YL, Zhang M, Yao G, Yang L, Tao JJ, Gong ZZ, He G, Sun ZQ (2016) Band gap manipulation of cerium doping TiO2 nanopowders by hydrothermal method. J Alloy Compd 662:179–184CrossRefGoogle Scholar
  37. 37.
    Wang H, Liu XX, Xie J, Duan M, Tang JL (2016) CO sensing properties of a cubic ZnSn(OH)6 synthesized by hydrothermal method. Chinese. Chem Lett 27:464–466Google Scholar
  38. 38.
    Jeong YJ, Balamurugan C, Lee DW (2016) Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sensor Actuat B-Chem 229:288–296CrossRefGoogle Scholar
  39. 39.
    Gong YF, Fang YH (2016) Preparation of belite cement from stockpiled high-carbon fly ash using granule-hydrothermal synthesis method. Constr Build Mater 111:175–181CrossRefGoogle Scholar
  40. 40.
    Li J, Xiong S, Li X, Qian Y (2013) A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nano 5:2045–2054Google Scholar
  41. 41.
    Bijelić M, Liu X, Sun Q, Djurišić AB, Xie MH, Ng AMC, Suchomski C, Djerdj I, Skoko Ž, Popović J (2015) Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J Mater Chem A 3(28):14759–14767CrossRefGoogle Scholar
  42. 42.
    Nassar MY (2013) Size-controlled synthesis of CoCO3 and Co3O4 nanoparticles by free-surfactant hydrothermal method. Mater Lett 94:112–115CrossRefGoogle Scholar
  43. 43.
    Nassar MY, Amin AS, Ahmed IS, Abdallah S (2016) Sphere-like Mn2O3 nanoparticles: facile hydrothermal synthesis and adsorption properties. J Taiwan Inst Chem E 64:79–88CrossRefGoogle Scholar
  44. 44.
    Hosseini SA, Niaei A, Salari D, Nabavi SR (2012) Nanocrystalline AMn2O4 (A=Co, Ni, Cu) spinels for remediation of volatile organic compounds—synthesis, characterization and catalytic performance. Ceram Int 38(2):1655–1661CrossRefGoogle Scholar
  45. 45.
    Aly HM, Moustafa ME, Nassar MY, Abdelrahman EA (2015) Synthesis and characterization of novel Cu (II) complexes with 3-substituted-4-amino-5-mercapto-1,2,4-triazole Schiff bases: a new route to CuO nanoparticles. J Mol Struct 1086:223–231CrossRefGoogle Scholar
  46. 46.
    Valian M, Beshkar F, Salavati-Niasari M (2017) Two facile methods to produce the cobalt manganite nanostructures and evaluation of their photocatalytic performance. J Mater Sci Mater Electron 28:6292–6300CrossRefGoogle Scholar
  47. 47.
    Jin R, Jiang H, Sun Y, Ma Y, Li H, Chen G (2016) Fabrication of NiFe2O4/C hollow spheres constructed by mesoporous nanospheres for high-performance lithium-ion batteries. Chem Eng J 303:501–510CrossRefGoogle Scholar
  48. 48.
    Huang L, Waller GH, Ding Y, Chen D, Ding D, Xi P, Wang ZL, Liu M (2015) Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries. Nano Energy 11:64–70CrossRefGoogle Scholar
  49. 49.
    Huang SZ, Cai Y, Jin J, Liu J, Li Y, Yu Y, Wang HE, Hua LH, Su BL (2015) Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn-DEG). Nano Energy 12:833–844CrossRefGoogle Scholar
  50. 50.
    Jiang Y, Zhang D, Li Y (2014) Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy 4:23–30CrossRefGoogle Scholar
  51. 51.
    Liu Y, Bai J, Ma X, Li J, Xiong S (2014) Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2(34):14236–14244CrossRefGoogle Scholar
  52. 52.
    Chen M, Liu J, Chao D, Wang J, Yin J, Jian HF, Shen ZX (2014) Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries. Nano Energy 9:364–372CrossRefGoogle Scholar
  53. 53.
    Hu R, Ouyang Y, Chen D, Wang H, Chen Y, Zhu M, Liu M (2016) Inhibiting Sn coarsening to enhance the reversibility of conversion reaction in lithiated SnO2 anodes by application of super-elastic NiTi films. Acta Mater 109:248–258CrossRefGoogle Scholar
  54. 54.
    Wu S, Wang W, Li M, Cao L, Lyu F, Yang M, Wang Z, Shi Y, Nan B, Yu S, Sun Z, Liu Y, Lu Z (2016) Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate. Nat Commun 7:13318CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Jin R, Ma Y, Sun Y, Li H, Wang Q, Chen G (2017) Manganese cobalt oxide (MnCo2O4) hollow spheres as high capacity anode materials for lithium-ion batteries. Energy Technol-Ger 5(2):293–299CrossRefGoogle Scholar
  56. 56.
    Yu L, Guan B, Xiao W, Lou XW (2015) Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries. Adv Energy Mater 5(21):1500981CrossRefGoogle Scholar
  57. 57.
    Li Y, Hou X, Li Y, Ru Q, Wang S, Hu S, Lam K (2017) Facile synthesis of hierarchical CoMn2O4 microspheres with porous and micro-/nanostructural morphology as anode electrodes for lithium-ion batteries. Electron Mater Lett 13(5):427–433CrossRefGoogle Scholar
  58. 58.
    Wang L, Liu B, Ran S, Wang L, Gao L, Qu F, Chen D, Shen G (2013) Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. J Mater Chem A 1(6):2139–2143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongfang Jiu
    • 1
    Email author
  • Na Ren
    • 1
  • Liya Jiang
    • 1
  • Qing Zhang
    • 1
  • Yuying Gao
    • 1
  • Yajuan Meng
    • 2
  • Lixin Zhang
    • 2
  1. 1.School of ScienceNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyNorth University of ChinaTaiyuanPeople’s Republic of China

Personalised recommendations