Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2671–2679 | Cite as

Magnesium hexakis(methanol)-dinitrate complex electrolyte for use in rechargeable magnesium batteries

  • E. ShehaEmail author
  • Moteaa El-Deftar
Original Paper


Functional compatible electrolyte with Mg2+ intercalation cathodes represents one of the largest obstacles in the development of practical Mg batteries MBs. In current work, we report for the first time magnesium hexakis(methanol)-dinitrate complex (MHMD) electrolyte product reaction of 2,2-dimethoxypropane with magnesium nitrate hexahydrate via ‘Solvent-in-Salt’ method. 2,2-Dimethoxypropane as a water scavenger can capture reducible molecules like H2O and dehydrate Mg(NO3)2.6H2O to form magnesium hexakis(methanol)-dinitrate complex. Meanwhile, Mg cloud bonds will become weak—something which frees up the mobility of Mg2+. This electrolyte exhibits high ionic conductivity with low activation energy ~ 0.18 eV. The general aim of the investigation was to demonstrate a potential application of MHMD electrolyte in Mg-ion cell. Mg cells were analyzed with the use of cyclic voltammetry (CV), galvanostatic charging/discharging tests, and electrochemical impedance spectroscopy. A comparative study between different cathodes like V2O5, GeO2, TiO2, and S using MHMD electrolyte was performed. The S cathode has an initial discharge capacity of 370 mAh g−1 and retained a reversible capacity at 60 mAh g−1 after 20 cycles exhibiting better electrochemical performances than those of V2O5, GeO2, and TiO2 cathodes. This work opens up a new pathway to explore new electrolytic materials for MBs with high performance.


Energy storage Magnesium battery Electrolyte Cathode 


Funding information

This work is partial financially supported by the Support Development of Scientific Research Centre of Benha University (SDSRC) (Grant No. 1076) and Science Technology Development Fund (Grant No. 12564).


  1. 1.
    Kang S-J, Lim S-C, Kim H, Heo JW, Hwang S, Jang M, Yang D, Hong S-T, Lee H (2017) Non-Grignard and Lewis acid-free sulfone electrolytes for rechargeable magnesium batteries. Chem Mater 29(7):3174–3180CrossRefGoogle Scholar
  2. 2.
    Shterenberg I, Salama M, Gofer Y, Levi E, Aurbach D (2014) The challenge of developing rechargeable magnesium batteries. MRS Bull 39(5):453–460CrossRefGoogle Scholar
  3. 3.
    Tutusaus O, Mohtadi R, Arthur TS, Mizuno F, Nelson EG, Sevryugina YV (2015) An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew Chem Int Ed 54(27):7900–7904CrossRefGoogle Scholar
  4. 4.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Du A, Zhang Z, Qu H, Cui Z, Qiao L, Wang L, Chai J, Lu T, Dong S, Dong T (2017) An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery. Energy Environ Sci 10(12):2616–2625CrossRefGoogle Scholar
  6. 6.
    Samuel D, Steinhauser C, Smith JG, Kaufman A, Radin MD, Naruse J, Hiramatsu H, Siegel DJ (2017) Ion pairing and diffusion in magnesium electrolytes based on magnesium borohydride. ACS Appl Mater Interfaces 9(50):43755–43766CrossRefPubMedGoogle Scholar
  7. 7.
    Mohtadi R, Matsui M, Arthur TS, Hwang SJ (2012) Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed 51(39):9780–9783CrossRefGoogle Scholar
  8. 8.
    Zhao-Karger Z, Bardaji MEG, Fuhr O, Fichtner M (2017) A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J Mater Chem A 5(22):10815–10820CrossRefGoogle Scholar
  9. 9.
    Ha S-Y, Lee Y-W, Woo SW, Koo B, Kim J-S, Cho J, Lee KT, Choi N-S (2014) Magnesium (II) bis (trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6(6):4063–4073CrossRefPubMedGoogle Scholar
  10. 10.
    Yoo HD, Liang Y, Dong H, Lin J, Wang H, Liu Y, Ma L, Wu T, Li Y, Ru Q (2017) Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries. Nat Commun 8(1):339CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2–Sn@ carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17(6):3830–3836CrossRefPubMedGoogle Scholar
  12. 12.
    McNulty D, Geaney H, Buckley D, O'Dwyer C (2018) High capacity binder-free nanocrystalline GeO2 inverse opal anodes for Li-ion batteries with long cycle life and stable cell voltage. Nano Energy 43(Supplement C):11–21CrossRefGoogle Scholar
  13. 13.
    Su D, Wang G (2013) Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 7(12):11218–11226CrossRefPubMedGoogle Scholar
  14. 14.
    Li Z, Guan BY, Zhang J, Lou XWD (2017) A compact nanoconfined sulfur cathode for high-performance lithium-sulfur batteries. Joule 1(3):576–587CrossRefGoogle Scholar
  15. 15.
    Chang C-C, Her L-J, Chen L-C, Lee Y-Y, Liu S-J, Tien H-J (2007) 2, 2-Dimethoxy-propane as electrolyte additive for lithium-ion batteries. J Power Sources 163(2):1059–1063CrossRefGoogle Scholar
  16. 16.
    Critchfield F, Bishop E (1961) Water determination by reaction with 2, 2-dimethoxypropane. Anal Chem 33(8):1034–1035CrossRefGoogle Scholar
  17. 17.
    Sa N, Wang H, Proffit DL, Lipson AL, Key B, Liu M, Feng Z, Fister TT, Ren Y, Sun C-J (2016) Is alpha-V 2 O 5 a cathode material for Mg insertion batteries? J Power Sources 323:44–50CrossRefGoogle Scholar
  18. 18.
    Sinha NN, Munichandraiah N (2008) Electrochemical conversion of LiMn2O4 to MgMn2O4 in aqueous electrolytes. Electrochem Solid-State Lett 11(11):F23–F26CrossRefGoogle Scholar
  19. 19.
    Zhang H, Ye K, Shao S, Wang X, Cheng K, Xiao X, Wang G, Cao D (2017) Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery. Electrochim Acta 229:371–379CrossRefGoogle Scholar
  20. 20.
    van Ingen Schenau A, Groeneveld W, Reedijk J (1972) Alcohols as ligands. Part II: metal (II) salts containing coordinated methanol. Recueil des Travaux Chimiques des Pays-Bas 91(1):88–94CrossRefGoogle Scholar
  21. 21.
    Al-Abadleh HA, Grassian V (2003) Phase transitions in magnesium nitrate thin films: a transmission FT-IR study of the deliquescence and efflorescence of nitric acid reacted magnesium oxide interfaces. J Phys Chem B 107(39):10829–10839CrossRefGoogle Scholar
  22. 22.
    Sulaiman M, Rahman A, Mohamed N (2013) Structural, thermal and conductivity studies of magnesium nitrate–alumina composite solid electrolytes prepared via sol-gel method. Int J Electrochem Sci 8:6647–6655Google Scholar
  23. 23.
    Natal-Santiago M, Dumesic J (1998) Microcalorimetric, FTIR, and DFT studies of the adsorption of methanol, ethanol, and 2, 2, 2-trifluoroethanol on silica. J Catal 175(2):252–268CrossRefGoogle Scholar
  24. 24.
    Chen L, Fan LZ (2018) Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater 15:37–45CrossRefGoogle Scholar
  25. 25.
    Zhang M, MacRae AC, Liu H, Meng YS (2016) Communication—investigation of anatase-TiO2 as an efficient electrode material for magnesium-ion batteries. J Electrochem Soc 163(10):A2368–A2370CrossRefGoogle Scholar
  26. 26.
    Chen L, Li Y, Li S-P, Fan L-Z, Nan C-W, Goodenough JB (2017) PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 46:176–184CrossRefGoogle Scholar
  27. 27.
    Tan C, Farhana N, Saidi NM, Ramesh S, Ramesh K (2018) Conductivity, dielectric studies and structural properties of P (VA-co-PE) and its application in dye sensitized solar cell. Org Electron 56:116–124CrossRefGoogle Scholar
  28. 28.
    Panero S, Scrosati B, Sumathipala H, Wieczorek W (2007) Dual-composite polymer electrolytes with enhanced transport properties. J Power Sources 167(2):510–514CrossRefGoogle Scholar
  29. 29.
    Zhao-Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M (2015) Performance improvement of magnesium sulfur batteries with modified non-nucleophilic electrolytes. Adv Energy Mater 5 (3)Google Scholar
  30. 30.
    Vinayan B, Zhao-Karger Z, Diemant T, Chakravadhanula VSK, Schwarzburger NI, Cambaz MA, Behm RJ, Kübel C, Fichtner M (2016) Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nano 8(6):3296–3306Google Scholar
  31. 31.
    Li X, Yang Z, Fu Y, Qiao L, Li D, Yue H, He D (2015) Germanium anode with excellent lithium storage performance in a germanium/lithium–cobalt oxide lithium-ion battery. ACS Nano 9(2):1858–1867CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Z, Cui Z, Qiao L, Guan J, Xu H, Wang X, Hu P, Du H, Li S, Zhou X (2017) Novel design concepts of efficient mg-ion electrolytes toward high-performance magnesium–selenium and magnesium–sulfur batteries. Adv Energy Mater 7(11):1602055–1602065CrossRefGoogle Scholar
  33. 33.
    Zhou X, Tian J, Hu J, Li C (2018) High rate magnesium–sulfur battery with improved cyclability based on metal–organic framework derivative carbon host. Adv Mater 30(7):1704166–1704172CrossRefGoogle Scholar
  34. 34.
    Zeng L, Wang N, Yang J, Wang J, NuLi Y (2017) Application of a sulfur cathode in nucleophilic electrolytes for magnesium/sulfur batteries. J Electrochem Soc 164(12):A2504–A2512CrossRefGoogle Scholar
  35. 35.
    Rui X, Lu Z, Yu H, Yang D, Hng HH, Lim TM, Yan Q (2013) Ultrathin V 2 O 5 nanosheet cathodes: realizing ultrafast reversible lithium storage. Nano 5(2):556–560Google Scholar
  36. 36.
    Hou J, Wu R, Zhao P, Chang A, Ji G, Gao B, Zhao Q (2013) Graphene–TiO2 (B) nanowires composite material: synthesis, characterization and application in lithium-ion batteries. Mater Lett 100:173–176CrossRefGoogle Scholar
  37. 37.
    Rashad M, Zhang H, Asif M, Feng K, Li X, Zhang H (2018) Low cost room temperature synthesis of NaV3O8. 1.69 H2O Nanobelts for Mg batteries. ACS Appl Mater Interfaces 10(5):4757–4766CrossRefPubMedGoogle Scholar
  38. 38.
    Yuan Z, Jiang Q, Feng C, Chen X, Guo Z (2017) Synthesis and performance of tungsten disulfide/carbon (WS2/C) composite as anode material. J Electron Mater 47:251–261CrossRefGoogle Scholar
  39. 39.
    Ihsan M, Wang H, Majid SR, Yang J, Kennedy SJ, Guo Z, Liu HK (2016) MoO 2/Mo 2 C/C spheres as anode materials for lithium ion batteries. Carbon 96:1200–1207CrossRefGoogle Scholar
  40. 40.
    Zhang H, Ye K, Zhu K, Cang R, Yan J, Cheng K, Wang G, Cao D (2017) The FeVO4· 0.9 H2O/graphene composite as anode in aqueous magnesium ion battery. Electrochim Acta 256:357–364CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceBenha UniversityBenhaEgypt
  2. 2.Department of Chemistry, Faculty of ScienceCairo UniversityGizaEgypt

Personalised recommendations