Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2779–2787 | Cite as

The role of ethanol-water solvent mixtures in N719 sensitization of electrodeposited ZnO nanorods

  • Daniel Siopa
  • Ricardo Nunes
  • Filomena Martins
  • M. Soledade C. S. Santos
  • Killian Lobato
  • Anabela Gomes
Original Paper
  • 99 Downloads

Abstract

Water plays an important role in N719 sensitization of ZnO films for application as photoanodes in DSC devices. The role of water content in ethanolic N719 sensitization solutions was examined resorting to N719-solvent interaction studies based on Kamlet-Taft solvatochromic parameters. Results show that as the water content increases, solvent’s HBA ability decreases, hindering dye aggregation in solution and increasing the fraction of dye carboxylic groups available for anchorage onto the charged ZnO surface. The impact of dye-dye-solvent equilibria in solution on ZnO nanorod films sensitization and device behavior was evaluated. Devices assembled with films sensitized in N719 solutions containing equal parts of ethanol and water showed a twofold increase in short-circuit current densities when compared to those sensitized in ethanol only, despite exhibiting significantly less stained films. Data indicate that the presence of water in the sensitization solution reduces the amount of dye aggregates in solution and on the ZnO surface.

Keywords

ZnO nanorods ZnO-based photoanodes sensitization Kamlet-Taft solvent parameters Solvent effect on N719 dye aggregation 

Notes

Acknowledgments

Financial support from Fundação para a Ciência e a Tecnologia (Portugal), through projects PEst-OE/QUI/UI0612/2013, UID/MULTI/00612/2013, and UID/GEO/50019/2013, are greatly appreciated. The authors wish to thank Prof. S. Sério for the sputtering work, Prof. N. Nunes, and Prof. R. Elvas-Leitão for enlightening discussions and Dr. M. J. Brites for aiding with device preparation and access to solar simulator facilities.

Supplementary material

10008_2018_3985_MOESM1_ESM.docx (133 kb)
ESM 1 (DOCX 132 kb)

References

  1. 1.
    Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawab J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897CrossRefGoogle Scholar
  2. 2.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6(3):242–247CrossRefPubMedGoogle Scholar
  3. 3.
    Saito M, Fujihara S (2008) Large photocurrent generation in dye-sensitized ZnO solar cells. Energy Environ Sci 1(2):280–283CrossRefGoogle Scholar
  4. 4.
    Birkel A, Lee YG, Koll D, Van Meerbeek X, Frank S, Choi MJ, Kang YS, Char K, Tremel W (2012) Highly efficient and stable dye-sensitized solar cells based on SnO2 nanocrystals prepared by microwave-assisted synthesis. Energy Environ Sci 5(1):5392–5400CrossRefGoogle Scholar
  5. 5.
    Rani RA, Zoolfakar AS, Subbiah J, Ou JZ, Kalantar-Zadeh K (2014) Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells. Electrochem Commun 40:20–23CrossRefGoogle Scholar
  6. 6.
    Milan R, Selopal GS, Epifani M, Natile MM, Sberveglieri G, Vomiero A, Concina I (2015) ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells. Sci Rep 5(1):14523CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ako RT, Peiris DSU, Ekanayake P, Tan AL, Young DJ, Zheng Z, Chellappan V (2016) DSSCs with ZnO@TiO2 core–shell photoanodes showing improved Voc: modification of energy gradients and potential barriers with Cd and Mg ion dopants. Sol Energy Mater Sol Cells 157:18–27CrossRefGoogle Scholar
  8. 8.
    Anta JA, Guillén E, Tena-Zaera R (2012) ZnO-based dye-sensitized solar cells. J Phys Chem C 116(21):11413–11425CrossRefGoogle Scholar
  9. 9.
    Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3-4):543–556CrossRefGoogle Scholar
  10. 10.
    Chandiran AK, Abdi-Jalebi M, Nazeeruddin MK, Grätzel M (2014) Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8(3):2261–2268CrossRefPubMedGoogle Scholar
  11. 11.
    Djurisic AB, Chen X, Leung YH, Ng AMC (2012) ZnO nanostructures: growth, properties and applications. J Mat Chem 22(14):6526–6535CrossRefGoogle Scholar
  12. 12.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4(6):455–459CrossRefPubMedGoogle Scholar
  13. 13.
    Gallopini E, Rochford J, Chen HH, Saraf G, Lu YC, Hagfeldt A, Boschloo GJ (2006) Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J Phys Chem B 110(33):16159–16161CrossRefGoogle Scholar
  14. 14.
    Martinson ABF, Góes MS, Fabregat-Santiago F, Bisquert J, Pellin MJ, Hupp JTJ (2009) Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. Phys Chem A 113(16):4015–4021CrossRefGoogle Scholar
  15. 15.
    Tena-Zaera R, Elias J, Lévy-Clément C, Bekeny C, Voss T, Mora-Seró I, Bisquert J (2008) Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J Phys Chem C 112(42):16318–16323CrossRefGoogle Scholar
  16. 16.
    Chang P-C, Chien C-J, Stichtenoth D, Ronning C, Lu JG (2007) Finite size effect in ZnO nanowires. Appl Phys Lett 90(11):113101CrossRefGoogle Scholar
  17. 17.
    Stähler J, Rinke P (2017) Global and local aspects of the surface potential landscape for energy level alignment at organic-ZnO interfaces. Chem Phys 485-486:149–165CrossRefGoogle Scholar
  18. 18.
    Guillén E, Azaceta E, Peter LM, Zukal A, Tena-Zaera R, Anta JA (2011) ZnO solar cells with an indoline sensitizer: a comparison between nanoparticulate films and electrodeposited nanowire arrays. Energy Environ Sci 4(9):3400–3407CrossRefGoogle Scholar
  19. 19.
    Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G (2011) Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 50(51):12321–12325CrossRefGoogle Scholar
  20. 20.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334(6056):629–634CrossRefPubMedGoogle Scholar
  21. 21.
    Chang W-C, Lee C-H, Yu W-C, Lin C-M (2012) Optimization of dye adsorption time and film thickness for efficient ZnO dye-sensitized solar cells with high at-rest stability. Nanoscale Res Lett 7(1):688CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dell’Orto E, Raimondo L, Sassella A, Abbotto A (2012) Dye-sensitized solar cells: spectroscopic evaluation of dye loading on TiO2. J Mater Chem 22(22):11364–11369CrossRefGoogle Scholar
  23. 23.
    Bedja I, Kamat PV, Hua X, Lappin AG, Hotchandani S (1997) Photosensitization of nanocrystalline ZnO films by bis(2,2′-bipyridine)(2,2′-bipyridine-4,4′-dicarboxylic acid)ruthenium(II). Langmuir 13(8):2398–2403CrossRefGoogle Scholar
  24. 24.
    Horiuchi H, Katoh R, Hara K, Yanagida M, Murata S, Arakawa H, Tachiya M (2003) Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3−Zn2+) aggregate formation. J Phys Chem B 107(11):2570–2574CrossRefGoogle Scholar
  25. 25.
    Zhang QF, Dandeneau CS, Zhou XY, Cao GZ (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21(41):4087–4108CrossRefGoogle Scholar
  26. 26.
    Ke L, Bin Dolmanan S, Shen L, Pallathadk PK, Zhang Z, Lai DMY, Liu H (2010) Degradation mechanism of ZnO-based dye-sensitized solar cells. Sol Energy Mater Sol Cells 94(2):323–326CrossRefGoogle Scholar
  27. 27.
    Keis K, Bauer C, Boschloo G, Hagfeldt A, Westermark K, Rensmo H, Siegbahn H (2002) Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J Photochem Photobiol A Chem 148(1-3):57–64CrossRefGoogle Scholar
  28. 28.
    Snaith HJ, Schmidt-Mende L (2007) Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv Mater 19(20):3187–3200CrossRefGoogle Scholar
  29. 29.
    Scholin R, Quintana M, Johansson EMJ, Hahlin M, Marinado T, Hagfeldt A, Rensmo H (2011) Preventing dye aggregation on ZnO by adding water in the dye-sensitization process. J Phys Chem C 115(39):19274–19279CrossRefGoogle Scholar
  30. 30.
    Taft RW, Abboud JLM, Kamlet MJ, Abraham MH (1985) Linear solvation energy relations. J Sol Chem 14(3):153–186CrossRefGoogle Scholar
  31. 31.
    Abraham MH (1993) Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem Soc Rev 22(2):73–83CrossRefGoogle Scholar
  32. 32.
    O’Neill ML, Kruss P, Burk RC (1993) Solvatochromic parameters and solubilities in supercritical fluid systems. Can J Chem 71(11):1834–1840CrossRefGoogle Scholar
  33. 33.
    Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94(8):2319–2358CrossRefGoogle Scholar
  34. 34.
    Rosés M, Buhvestov U, Ràfols C, Rived F, Bosch E (1997) Solute–solvent and solvent–solvent interactions in binarysolvent mixtures. Part 6. A quantitative measurement of the enhancement of the water structure in 2-methylpropan-2-ol–waterand propan-2-ol–water mixtures by solvatochromic indicators. J Chem Soc Perkin Trans 2:1341–1348CrossRefGoogle Scholar
  35. 35.
    Bini R, Chiappe C, Mestre VL, Pomelli CS, Welton T (2008) A rationalization of the solvent effect on the Diels–Alder reaction in ionic liquids using multiparameter linear solvation energy relationships. Org Biomol Chem 6(14):2522–2529CrossRefPubMedGoogle Scholar
  36. 36.
    Martins F, Moreira L, Nunes N, Leitão RE (2010) Solvent effects on solution enthalpies of adamantyl derivatives. J Therm Anal Calorim 100(2):483–491CrossRefGoogle Scholar
  37. 37.
    Struebing H, Ganase Z, Karamertzanis PG, Siougkrou E, Haycock P, Piccione PM, Armstrong A, Galindo A, Adjiman CS (2013) Computer-aided molecular design of solvents for accelerated reaction kinetics. Nat Chem 5(11):952–957CrossRefPubMedGoogle Scholar
  38. 38.
    Nunes N, Elvas-Leitão R, Martins F (2014) UV–vis spectroscopic study of preferential solvation and intermolecular interactions in methanol/1-propanol/acetonitrile by means of solvatochromic probes. Spectrochim Acta A 124:470–479CrossRefGoogle Scholar
  39. 39.
    Siopa D, Sério S, Jorge MEM, Viana AS, Gomes A (2016) ZnO seed layers prepared by DC reactive magnetron sputtering to be applied as electrodeposition substrates. J Electrochem Soc 163(8):H697–H704CrossRefGoogle Scholar
  40. 40.
    Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, LondonCrossRefGoogle Scholar
  41. 41.
    Perrin DDA, Armarego WLF (1988) Purification of laboratory chemicals. Pergamon Press, OxfordGoogle Scholar
  42. 42.
    Adachi M, Sakamoto M, Jiu JT, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110(28):13872–13880CrossRefPubMedGoogle Scholar
  43. 43.
    Siopa D, Gomes A (2013) Nucleation and growth of ZnO nanorod arrays onto flexible substrates. J Electrochem Soc 160(10):D476–D484CrossRefGoogle Scholar
  44. 44.
    Paunovic M, Schlesinger M (1998) Fundamentals of electrochemical deposition. Wiley, PenningtonGoogle Scholar
  45. 45.
    Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301CrossRefGoogle Scholar
  46. 46.
    Nazeeruddin MK, Zakeeruddin SM, Humphry-Baker R, Jirousek M, Liska P, Vlachopoulos N, Shklover V, Fischer CH, Grätzel M (1999) Acid−base equilibria of (2,2‘-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorg Chem 38(26):6298–6305CrossRefPubMedGoogle Scholar
  47. 47.
    Leon CP, Kador L, Peng B, Thelakkat M (2005) Influence of the solvent on the surface-enhanced Raman spectra of ruthenium(II) bipyridyl complexes. J Phys Chem B 109(12):5783–5789CrossRefGoogle Scholar
  48. 48.
    Leitão RE, Martins F, Ventura MC, Nunes N (2002) Structural characterization of the ternary solvent mixture methanol–acetonitrile–1-propanol. J Phys Org Chem 15(9):623–630CrossRefGoogle Scholar
  49. 49.
    Quintana M, Edvinsson T, Hagfeldt A, Boschloo G (2007) Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime. J Phys Chem C 111(2):1035–1041CrossRefGoogle Scholar
  50. 50.
    Chetia TR, Ansari MS, Qureshi M (2016) Graphitic carbon nitride as a photovoltaic booster in quantum dot sensitized solar cells: a synergistic approach for enhanced charge separation and injection. J Mater Chem A 4(15):5528–5541CrossRefGoogle Scholar
  51. 51.
    Chetia TR, Ansari MS, Qureshi M (2016) Rational design of hierarchical ZnO superstructures for efficient charge transfer: mechanistic and photovoltaic studies of hollow, mesoporous, cage-like nanostructures with compacted 1D building blocks. Phys Chem Chem Phys 18(7):5344–5357CrossRefPubMedGoogle Scholar
  52. 52.
    Qiu J, Li X, Zhuge F, Gan X, Gao X, He W, Park S-J, Kim H-K, Huang Y-H (2010) Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells. Nanotechnology 21(19):195602CrossRefPubMedGoogle Scholar
  53. 53.
    Swetha S, Soman S, Pradhan SC, Unni KNN, Mohamed AAP, Nair BN, Saraswathy HUN (2017) Fine tuning compact ZnO blocking layers for enhanced photovoltaic performance in ZnO based DSSC: a detailed insight using β recombination, EIS, OCVD and IMVS techniques. New J Chem 41:1007–1016CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Química e Bioquímica, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Instituto Dom Luiz, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations