Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2691–2701 | Cite as

A highly sensitive sensor of paracetamol based on zinc-layered hydroxide-L-phenylalanate-modified multiwalled carbon nanotube paste electrode

  • Mohamad Syahrizal Ahmad
  • Illyas Md IsaEmail author
  • Norhayati Hashim
  • Suyanta M. Si
  • Mohamad Idris Saidin
Original Paper


A new zinc-layered hydroxide-L-phenylalanate (ZLH-LP)-modified multiwalled carbon nanotube (MWCNT) was prepared as a new material of paste electrode for the detection of paracetamol (PCM) in 1.0 × 10−1 M phosphate buffer solution and at pH 7.5. The electrochemical characterization of the MWCNTs/ZLH-LP paste electrode was characterized by square wave voltammetry, electrochemical impedance spectroscopy, and cyclic voltammetry while the morphology properties of the MWCNTs, ZLH-LP, and MWCNTs/ZLH-LP were investigated using transmission electron microscopy and scanning electron microscopy. Under optimized conditions, the MWCNTs/ZLH-LP paste electrode demonstrated an excellent electrocatalytic activity towards oxidation of PCM in the linear responses’ ranges from 7.0 × 10−7 M to 1.0 × 10−4 M (correlation coefficient, 0.996) with the limit of detection obtained at 8.3 × 10−8 M. As a conclusion, the MWCNTs/ZLH-LP paste electrode revealed good repeatability, reproducibility, and stability, and was found to be applicable for use in pharmaceutical tablet samples.

Graphical abstract


Paracetamol Multiwalled carbon nanotubes Square wave voltammetry Chronocoulometry Zinc layered hydroxide-L-phenylalanate 


Funding information

The authors would like to thank the Ministry of Higher Education (MOHE), Malaysia, for financial support through a FRGS grant: 2017-0075-101-02 for this work. One of the authors, Mohamad Syahrizal Ahmad is also thankful to Sultan Idris Education University for providing PhD scholarship under SLKKAP scheme.

Compliance with ethical standards

Conflict of interest

The authors declare that they have competing interests.


  1. 1.
    Bosch ME, Sanchez AJR, Rojas FS, Ojeda CB (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42(3):291–321CrossRefGoogle Scholar
  2. 2.
    Goyal RN, Singh SP (2006) Votammetric determination of paracetamol at C60 modified glassy carbon electrode. Electrochim Acta 51(15):3008–3012CrossRefGoogle Scholar
  3. 3.
    Prabakar SJR, Narayanan SS (2007) Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode. Talanta 72(5):1818–1827CrossRefPubMedGoogle Scholar
  4. 4.
    Bessems JGM, Vermeulen NPE (2001) Paracetamol (acetaminophen) induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31(1):55–138CrossRefPubMedGoogle Scholar
  5. 5.
    Olaleye MT, Roch BTJ (2008) Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defense system. Exp Toxicol Pathol 59(5):319–327CrossRefPubMedGoogle Scholar
  6. 6.
    Mazer M, Perrone J (2008) Acetaminophen induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol 4(1):2–6CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lee WM (2013) Drug induced acute liver failure. Clin Liver Dis 17(4):575–586CrossRefPubMedGoogle Scholar
  8. 8.
    Knochen M, Giglio J, Reis BF (2003) Flow injection spectrophotometric determination of paracetamol in tablets and oral solutions. J Pharm Biomed Anal 33(2):191–197CrossRefPubMedGoogle Scholar
  9. 9.
    Capella-Petro ME, Bose D, Rubert MF, Esteve Romero J (2006) Optimization of a capillary zone electrophoresis method by using a central composite factorial design for the determination of codeine and paracetamol in pharmaceuticals. J Chromatogr B 839(1-2):95–101CrossRefGoogle Scholar
  10. 10.
    Usifoh CO, Adelusi SA, Adebambo RF (2002) Colorimetric determination of paracetamol in raw material and in pharmaceutical dosage forms. Pak J Sci Ind Res 45:7–9Google Scholar
  11. 11.
    Issa YM, Hassoun MEM, Zayed AG (2012) Simultaneous determination of paracetamol, caffeine, domperidone, ergotamine tartrate, propyphenazone and drotaverine HCl by high performance liquid chromatography. J Liq Chromatogr Relat Technol 35:2148–2161Google Scholar
  12. 12.
    Marin A, Barbas C (2004) CE versus HPLC for the dissolution test in a pharmaceutical formulation containing acetaminophen, phenylephrine and chlorpheniramine. J Pharm Biomed Anal 35(4):769–777CrossRefPubMedGoogle Scholar
  13. 13.
    Wesley CS, Pareira PF, Marra MC (2011) A simple strategy for simultaneous determination of paracetamol and caffeine using flow injection analysis with multiple pulse amperometric detection. Electroanalysis 23:2764–2770CrossRefGoogle Scholar
  14. 14.
    Al-Zoubi N, Koundourellis JE, Malamataris S (2002) FTIR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes. J Pharm Biomed Anal 29(3):459–467CrossRefPubMedGoogle Scholar
  15. 15.
    Rote AR, Kumbhoje PA, Bhambar RS (2012) UV-visible spectrophotometric simultaneous estimation of paracetamol and nabumetone by AUC method in combined tablet dosage form. Pharm Methods 3(1):40–43CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sirajuddin AR, Khaskheli A, Shah MI, Bhanger A, Niaz A, Mahesar S (2007) Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochim Acta A Mol Biomol Spectrosc 68(3):747–751CrossRefPubMedGoogle Scholar
  17. 17.
    Easwaramoorthy D, Yu YC, Huang HJ (2001) Chemiluminescence detection of paracetamol by a luminal-permanganate based reaction. Anal Chim Acta 439(1):95–100CrossRefGoogle Scholar
  18. 18.
    Yang H, Liu B, Ding Y, Li L, Ouyang X (2015) Fabrication of cuprous oxide nanoparticles-graphene nanocomposite for determination of acetaminophen. J Electroanal Chem 757:88–93CrossRefGoogle Scholar
  19. 19.
    Chiavazza E, Berto S, Giacomino A, Malandrino M, Barolo C, Prenesti E, Vione D, Abollino O (2016) Electrocatalysis in the oxidation of acetaminophen with an electrochemically activated glassy carbon electrode. Electrochim Acta 192:139–147CrossRefGoogle Scholar
  20. 20.
    Vidyadharan AK, Jayan D, Nancy TEM (2014) Ni0.1Co0.9Fe2O4 based electrochemical sensor for the detection of paracetamol. J Solid State Electrochem 18(9):2513–2519CrossRefGoogle Scholar
  21. 21.
    Pournaghi-Azar MH, Kheradmandi S, Saadatirad A (2010) Simultaneous voltammetry of paracetamol, ascorbic acid and codeine on a palladium plated aluminium electrode: oxidation pathway and kinetics. J Solid State Electrochem 14(9):1689–1695CrossRefGoogle Scholar
  22. 22.
    Tyszczuk-Rotko K, Beczkowska I, Wojciak-Kosior M, Sowa I (2014) Simultaneous voltammetric determination of paracetamol and ascorbic acid using a boron-doped diamond electrode modified with Nafion and lead films. Talanta 129:384–391CrossRefPubMedGoogle Scholar
  23. 23.
    Yang G, Wang L, Jia J, Zhou D, Li D (2012) Chemically modified glassy carbon electrode for electrochemical sensing paracetamol in acidic solution. J Solid State Electrochem 16(9):2967–2977CrossRefGoogle Scholar
  24. 24.
    Raoof JB, Chekin F, Ojani R, Barari S, Anbia M, Mandegarzad S (2012) Synthesis and characterization of ordered mesoporous carbon as electrocatalyst for simultaneous determination of epinephrine and acetaminophen. J Solid State Electrochem 16(12):3753–3760CrossRefGoogle Scholar
  25. 25.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefGoogle Scholar
  26. 26.
    Cernat A, Tertis M, Sandulescu R, Bedioui F, Cristea A, Cristea C (2015) Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: a review. Anal Chim Acta 886:16–28CrossRefPubMedGoogle Scholar
  27. 27.
    Zagal JH, Griveau S, Santander-Nelli M, Granados SG, Bedioui F (2012) Carbon nanotubes and metalloporphyrins and metallophthalocyanines-based materials for electroanalysis. J Porphyrins Phthalocyanines 16(07n08):713–740CrossRefGoogle Scholar
  28. 28.
    Wang S, Yang J, Zhou X, Xie J, Ma L, Huang BJ (2014) Electrochemical properties of carbon nanotube/graphene oxide hybrid electrodes fabricated via layer by layer self-assembly. J Electroanal Chem 722:141–147CrossRefGoogle Scholar
  29. 29.
    Li H, Pan L, Lu T, Zhan Y, Nie C, Sun ZJ (2011) A comparative study on electrosorptive behavior of carbon nanotubes and graphene for capacitive deionization. J Electroanal Chem 653(1-2):40–44CrossRefGoogle Scholar
  30. 30.
    Beitollahi H, Raoof JB, Hosseinzadeh R (2011) Application of a carbon paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes for voltammetric determination of levodopa in the presence of uric acid and folic acid. Electroanalysis 23(8):1934–1940CrossRefGoogle Scholar
  31. 31.
    Hashim N, Sharif SNM, Isa IM, Hamid SA, Hussein MZ, Bakar SA, Mamat M (2017) Controlled release formulation of an anti-depression drug based on a L-phenylalanate-zinc layered hydroxide intercalation compound. J Phys Chem Solids 105:35–44CrossRefGoogle Scholar
  32. 32.
    Yin H, Shang K, Meng X, Ai S (2011) Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophilic layered double hydroxide. Microchim Acta 175(1–2):39–46CrossRefGoogle Scholar
  33. 33.
    Isa IM, Saruddin S, Hashim N, Ahmad M, Ghani SA (2016) Determination of hydrazine in various water samples by square wave voltammetry with zinc-layered hydroxide-3-(4-methoxyphenyl) propionate nanocomposite modified glassy carbon electrode. Int J Electrochem Sci 11:4619–4631CrossRefGoogle Scholar
  34. 34.
    Su LH, Zhang XG, Liu Y (2008) Electrochemical performance of Co-Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes. J Solid State Electrochem 12(9):1129–1134CrossRefGoogle Scholar
  35. 35.
    Nicholson RS (1965) Some examples of the numerical solution of nonlinear integral equations. Anal Chem 37(6):667–671CrossRefGoogle Scholar
  36. 36.
    Laviron E, Roullier L, Degrand C (1980) A multilayer model for the study of space distributed redox modified electrodes: part II. Theory and application of linear potential sweep voltammetry for a simple reaction. J Electroanal Chem 112(1):11–23CrossRefGoogle Scholar
  37. 37.
    Mirceski V, Lovric M (2001) Ohmic drop effects in square-wave voltammetry. J Electroanal Chem 497(1-2):114–124CrossRefGoogle Scholar
  38. 38.
    Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(ethylenedinitrolo(tetraacetate) on mercury electrodes). Anal Chem 36(4):932–934CrossRefGoogle Scholar
  39. 39.
    Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New YorkGoogle Scholar
  40. 40.
    Saidin MI, Isa IM, Ahmad M, Hashim N, Kamari A, Ghani SA, Suyanta MS (2016) Square wave anodic stripping voltammetry of copper (II) at a MWCNT paste electrode modified with a tetracarbonylmolybdenum (0) nanocomposite. Microchim Acta 183(4):1441–1448CrossRefGoogle Scholar
  41. 41.
    Arvand M, Gholizadeh TM (2013) Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloids Surf B 103:84–93CrossRefGoogle Scholar
  42. 42.
    Holanda LF, Ribeiro FWP, Sousa CP, Casciano PNS, Neto PL, Correia AN (2016) Multi-walled carbon nanotubes-cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen. J Electroanal Chem 772:9–16CrossRefGoogle Scholar
  43. 43.
    Mao A, Li H, Jin D, Yu L, Hu X (2015) Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan-copper complex by self-assembly technique. Talanta 144:252–257CrossRefPubMedGoogle Scholar
  44. 44.
    Li T, Xu J, Zhao L, Shen S, Yuan M, Liu W, Tu Q, Yu R, Wang J (2016) Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta 159:356–364CrossRefPubMedGoogle Scholar
  45. 45.
    Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y (2016) Electrochemical preparation of nickel and copper oxides decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121CrossRefPubMedGoogle Scholar
  46. 46.
    Santos AM, Wong A, Almeida AA, Fatibello-Filho O (2017) Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles. Talanta 174:610–618CrossRefGoogle Scholar
  47. 47.
    Filik H, Avan AA, Aydar S, Cetintas G (2014) Determination of acetaminophen in the presence of ascorbic acid using a glassy carbon electrode modified with poly(caffeic acid). Int J Electrochem Sci 9:148–160Google Scholar
  48. 48.
    Mahmoud BG, Khairy M, Rashwan FA, Banks CE (2017) Simultaneous voltammetric determination of acetaminophen and isoniazid (hepatotoxicity related drugs) utilizing bismuth oxide nanorod modified screen-printed electrochemical sensing platforms. Anal Chem 89(3):2170–2178CrossRefPubMedGoogle Scholar
  49. 49.
    Tajik S, Taher MA, Baitollahi H (2014) Application of new ferrocene derivative modified graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sensors Actuators B Chem 197:228–236CrossRefGoogle Scholar
  50. 50.
    Hudari FF, Duarte EH, Pereira AC, Dall’Antonia LH, Kubota LT, Tarley CRT (2013) Voltammetric method optimized by multi-response assays for the simultaneous measurements of uric acid and acetaminophen in urine in the presence of surfactant using MWCNT paste electrode. J Electroanal Chem 696:52–58CrossRefGoogle Scholar
  51. 51.
    Ghica ME, Ferreira GM, Brett CMA (2015) Poly(thionine) carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J Solid State Electrochem 19(9):2869–2881CrossRefGoogle Scholar
  52. 52.
    Ensafi AA, Ahmadi N, Rezaei B, Abarghoui MM (2015) A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta 134:745–753CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohamad Syahrizal Ahmad
    • 1
    • 2
  • Illyas Md Isa
    • 1
    • 2
    Email author
  • Norhayati Hashim
    • 1
    • 2
  • Suyanta M. Si
    • 3
  • Mohamad Idris Saidin
    • 4
  1. 1.Nanotechnology Research Centre, Faculty of Science and MathematicsSultan Idris Education UniversityTanjung MalimMalaysia
  2. 2.Department of Chemistry, Faculty of Science and MathematicsSultan Idris Education UniversityTanjung MalimMalaysia
  3. 3.Department of Chemistry Education, Faculty of Mathematics and Natural ScienceYogyakarta State UniversityYogyakartaIndonesia
  4. 4.Advanced Analytical Services LaboratoryMIMOS Bhd., Technology Park of MalaysiaKuala LumpurMalaysia

Personalised recommendations