Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2811–2820 | Cite as

Effects of Nb substitution on structure and electrochemical properties of LiNi0.7Mn0.3O2 cathode materials

  • Zhifeng Li
  • Chuiyi Luo
  • Chunxiang Wang
  • Guoxiang Jiang
  • Jun Chen
  • Shengwen Zhong
  • Qian Zhang
  • Dong Li
Original Paper

Abstract

Nb-doped cathode materials with the formula Li(Ni0.7Mn0.3)1−xNbxO2 (x = 0, 0.01, 0.02, 0.03, 0.04) have been prepared successfully by calcining the mixtures of LiOH·H2O, Nb2O5, and Ni0.7Mn0.3(OH)2 precursor formed through a simple continuous co-precipitation method. The effects of Nb substitution on the crystal structure and electrochemical properties of LiNi0.7Mn0.3O2 were studied systematically by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and various electrochemical measurements. The results show that the lattice parameters of the Nb substitution LiNi0.7Mn0.3O2 samples are slightly larger than that of pure LiNi0.7Mn0.3O2, and the basic α-NaFeO2 layered structure does not change with the Nb doping. What’s more, better morphology, lower resistance, and good cycle stability were obtained after Nb substitution. In addition, CV test exhibits that Nb doping results in lower electrode polarization and XPS results indicate that the valence of Mn kept constant but the component of Ni3+ decreased after doping. All the results indicate that Nb doping in LiNi0.7Mn0.3O2 is a promising method to improve the properties of Ni-rich lithium-ion batteries positive-electrode materials.

Keywords

Lithium-ion batteries Ni-rich positive-electrode materials Niobium doping Electrochemical properties 

Notes

Funding information

This work received financial support from the National Natural Science Fund of China (No. 51372104), Jiangxi Province Science and Technology Plan Project (grant nos. 20141BBE50019, 20151BBE50106), Youth science fund program of Jiangxi science and technology bureau (grant no. 2010GQC0064), and Jiangxi Provincial Education Office Natural Science Fund Project (GJJ170510).

References

  1. 1.
    Xu B, Qian D, Wang Z, Meng YS (2012) Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R 73:51–65CrossRefGoogle Scholar
  2. 2.
    Chen J (2013) Recent progress in advanced materials for lithium ion batteries. Mater 6(1):156–183CrossRefGoogle Scholar
  3. 3.
    Sun YK, Lee DJ, Lee YJ, Chen Z, Myung ST (2013) Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. Acs Appl Mater Inter 5(21):11434–11440CrossRefGoogle Scholar
  4. 4.
    Kang J, Han B (2015) First-principles study on the thermal stability of LiNiO2 materials coated by amorphous Al2O3 with atomic layer thickness. Acs Appl Mater Inter 7(21):11599–11603CrossRefGoogle Scholar
  5. 5.
    Liang CP, Kong FT, Longo RC, KC S, Kim JS, Jeon SH, Choi S, Cho K (2016) Unraveling the origin of instability in Ni-rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C 120(12):6383–6393CrossRefGoogle Scholar
  6. 6.
    Hwang S, Kim SM, Bak SM, Kim SY, Cho BW, Chung KY, Lee JY, Stach EA, Chang WY (2015) Using real-time electron microscopy to explore the effects of transition-metal composition on the local thermal stability in charged LixNiyMnzCo1-y-zO2 Cathode Materials. Chem Mater 27(11):3927–3935CrossRefGoogle Scholar
  7. 7.
    Konishi H, Yoshikawa M, Hirano T (2013) The effect of thermal stability for high-Ni-content layer-structured cathode materials, LiNi0.8Mn0.1−xCo0.1MoxO2 (x =0, 0.02, 0.04). J Power Sources 244(4):23–28CrossRefGoogle Scholar
  8. 8.
    Dianat A, Seriani N, Bobeth M, Cuniberti G (2013) Effects of Al-doping on the properties of Li–Mn–Ni–O cathode materials for Li-ion batteries: an ab initio study. J Mater Chem A 1(32):9273–9280CrossRefGoogle Scholar
  9. 9.
    Zhang B, Li L, Zheng J (2012) Characterization of multiple metals (Cr, Mg) substituted LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. J Alloy Comp 520:190–194CrossRefGoogle Scholar
  10. 10.
    Lyu YC, Zhao NJ, Hu EY, Xiao RJ, Yu XQ, Gu L, Yang XQ, Li H (2015) Probing reversible multielectron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0–4.8 V. Chem Mater 27(15):5238–5252CrossRefGoogle Scholar
  11. 11.
    Bak SM, Hu E, Zhou Y, Yu X, Senanayake SD, Cho SJ, Kim KB, Chung KY, Yang XC (2014) Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. Acs Appl Mater Interfaces 6(24):22594–22601CrossRefGoogle Scholar
  12. 12.
    Zhao T, Chen S, Chen R, Li L, Zhang X, Xie M, Wu F (2014) The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries. Acs Appl Mater Interfaces 6(17):21711–20720CrossRefGoogle Scholar
  13. 13.
    Li Q, Li G, Fu C, Luo D, Fan J, Li L (2014) K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. Acs Appl Mater Interfaces 6(13):10330–10341CrossRefGoogle Scholar
  14. 14.
    Augustyn V, Therese S, Turner T, Manthiram A (2015) Nickel-rich layered LiNi1-xMxO2 (M = Mn, Fe, and Co) electrocatalysts with high oxygen evolution reaction activity. J Mater Chem A 3(32):16604–16612CrossRefGoogle Scholar
  15. 15.
    Schipper F, Dixit M, Kovacheva D, Talianker M, Haik O, Grinblat J, Erickson EM, Ghanty C, Major DT, Markovsky B, Aurbach D (2016) Stabilizing nickel-rich layered cathode materials by a high-charge cation doping strategy: zirconium-doped LiNi0.6Co0.2Mn0.2O2. J Mater Chem A 4(41):16073–16084CrossRefGoogle Scholar
  16. 16.
    Cho J (2000) LiNi0.74Co0.26-xMgxO2 cathode material for a Li-ion cell. Chem Mater 12(10):3089–3094CrossRefGoogle Scholar
  17. 17.
    Dou S (2013) Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries. J Solid State Electrochem 17:911–926CrossRefGoogle Scholar
  18. 18.
    Boulineau A, Simonin L, Colin JF, Canévet E, Daniel L, Sébastien P (2012) Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem Mater 24(18):3558–3566CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Wang ZB, Lei J, Li FF, Wu J, Zhang XG, Yu FD, Ke K (2015) Investigation on performance of Li(Ni0.5Co0.2Mn0.3)1−xTixO2 cathode materials for lithium-ion battery. Ceram Int 41(7):9069–9077CrossRefGoogle Scholar
  20. 20.
    Kam KC, Mehta A, Heron JT, Doeff MM (2014) Electrochemical and physical properties of Ti substituted layered nickel manganese cobalt oxide (NMC) cathode materials. J Electrochem Soc 159(8):A1383–A1392CrossRefGoogle Scholar
  21. 21.
    Liu H, Li J, Zhang Z, Gong Z, Yang Y (2004) Structural, electrochemical and thermal properties of LiNi0.8−yTiyCo0.2O2 as cathode materials for lithium ion battery. Electrochim Acta 49(7):1151–1159CrossRefGoogle Scholar
  22. 22.
    Yi TF, Yin LC, Ma YQ, Shen HY, Zhu YR, Zhu RS (2013) Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material. Ceram Int 39(4):4673–4678CrossRefGoogle Scholar
  23. 23.
    Yi TF, Xie Y, Zhu YR, Zhu RS, Ye MF (2012) High rate micron-sized niobium-doped LiMn1.5Ni0.5O4 as ultra high power positive-electrode material for lithium-ion batteries. J Power Sources 211:59–65CrossRefGoogle Scholar
  24. 24.
    Wu JF, Liu HH, Ye XH, Xia JP, Lu Y, Lin CW, Yu XW (2015) Effect of Nb doping on electrochemical properties of LiNi1/3Co1/3Mn1/3O2 at high cutoff voltage for lithium-ion battery. J Alloy Comp 644:223–227CrossRefGoogle Scholar
  25. 25.
    Li X, Xin HX, Liu YF, Li D, Yuan XQ, Qin XY (2015) Effect of niobium doping on the microstructure and electrochemical properties of lithium-rich layered Li[Li0.2Ni0.2Mn0.6]O2 as cathode materials for lithium ion batteries. Rsc Adv 5(56):45351–45358CrossRefGoogle Scholar
  26. 26.
    Gao Y, Wang X, Ma J, Wang Z, Chen L (2015) Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem Mater 27(9):3456–3461CrossRefGoogle Scholar
  27. 27.
    Kong F, Longo RC, Park MS, Yoon J, Yeon DH, Park JH, Wang WH, KC S, Doo SG, Cho K (2015) Ab initio study of doping effects in LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries. J Mater Chem A 3(16):8489–8500CrossRefGoogle Scholar
  28. 28.
    Li Z, Chernova NA, Feng J, Upreti S, Omenya F, Whittingham MS (2012) Stability and rate capability of Al substituted lithium-rich high-manganese content oxide materials for Li-ion batteries. J Electrochem Soc 159(2):A116–A120CrossRefGoogle Scholar
  29. 29.
    Li Y, Han Q, Ming X, Ren M, Li L, Ye W, Zhang X, Xu H, Li L (2014) Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode material prepared by a novel hydrothermal process. Ceram Int 40(9):14933–14938CrossRefGoogle Scholar
  30. 30.
    Li J, Tian Y, Xu C (2012) Influence of Nb5+ doping on structure and electrochemical properties of spinel Li1.02Mn2O4. J Mater Sci Technol 28(9):817–822CrossRefGoogle Scholar
  31. 31.
    Zhao R, Yang Z, Chen JC, Chen Z, Liang J, Chen H (2015) Novel solvo/hydrothermal assisted co-precipitation method for faceted LiNi1/3Mn1/3Co1/3O2 cathode material. J Alloy Comp 627:206–210CrossRefGoogle Scholar
  32. 32.
    Hashem AMA, Abdel-Ghany AE, Eid AE, Trottier J, Zaghib K, Manger A, Julien CM (2011) J Power Sources 196(20):8632–8637CrossRefGoogle Scholar
  33. 33.
    Zhong S, Lai M, Yao W, Li Z (2016) Synthesis and electrochemical properties of LiNi0.8CoxMn0.2-xO2 positive-electrode material for lithium-ion batteries. Electrochim Acta 212:343–351CrossRefGoogle Scholar
  34. 34.
    Zhong S, Chen P, Yao W (2015) Ni-rich layered oxide Li1.05(Ni0.7Mn0.3)O2 as a highly reversible cathode material for lithium-ion batteries. Ecs Electrochem Lett 4(6):A45–A48CrossRefGoogle Scholar
  35. 35.
    Zhen C, Jin W, Chao DL, Baikie T, Bai LY, Chen S, Zhao YL, Sum TC, Lin JY, Shen ZX (2016) Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance. Sci Rep 6:25771–25780CrossRefGoogle Scholar
  36. 36.
    Li LJ, Li XH, Wang ZX, Guo HJ, Yue P, Chen W, Wu L (2011) A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery. Powder Technol 206(3):353–357CrossRefGoogle Scholar
  37. 37.
    Kim D, Lim JM, Lim YG, Yu JS, Park MS, Cho M, Cho K (2015) Design of nickel-rich layered oxides using d electronic donor for redox reactions. Chem Mater 27(18):6450–6456CrossRefGoogle Scholar
  38. 38.
    Zhang J, Lu QW, Fang JH, Wang JL, Yang J, NuLi YN (2014) Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. Acs Appl Mater Interfaces 6(20):17965–17973CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhifeng Li
    • 1
  • Chuiyi Luo
    • 1
  • Chunxiang Wang
    • 1
  • Guoxiang Jiang
    • 1
  • Jun Chen
    • 1
  • Shengwen Zhong
    • 1
  • Qian Zhang
    • 1
  • Dong Li
    • 1
  1. 1.Jiangxi Key laboratory of Power Battery and Material, School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouPeople’s Republic of China

Personalised recommendations