Advertisement

Journal of Solid State Electrochemistry

, Volume 22, Issue 9, pp 2767–2774 | Cite as

Facile synthesis of CoWO4/RGO composites as superior anode materials for lithium-ion batteries

  • Feihui Li
  • HeYa Na
  • Wei Jin
  • Xiaoyang Xu
  • Wei Wang
  • Jianping Gao
Original Paper
  • 134 Downloads

Abstract

In this paper, a facile method has been developed to synthesize supported CoWO4 on the reduced graphene oxide (RGO) as high-performance anode material for Li-ion batteries. The composites with cuboid-like CoWO4 nanoparticles were prepared by directly adding graphene oxide into the precursor solution followed by a hydrothermal treatment. Different analytical methods like high-resolution TEM, XRD, TGA, and XPS characterizations were employed to illustrate structural information of the as-prepared CoWO4 and CoWO4/RGO composites. In addition, the Li-ion battery performance using the composites as anode materials was also discussed based on the detailed galvanostatic charge-discharge cycling tests. The result shows that the specific capacity of the as-prepared CoWO4/RGO composites can reach 533.3 mAh g−1 after 50 cycles at a current density of 100 mA g−1. During the whole cyclic process, the coulombic efficiency was maintained higher than 90%. Therefore, CoWO4, as an environment-friendly and cost-effective anode material, has promising potential for Li-ion batteries.

Keywords

CoWO4 nanocubes RGO Composite Li-ion battery Anode 

Notes

Funding information

The authors received financial support from the National Science Foundation (51573126).

References

  1. 1.
    Kang S, Li YY, Wu MM, Cai M, Shen PK (2014) Synthesis of hierarchically flower-like FeWO4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. Int J Hydrog Energy 39(28):16081–16087CrossRefGoogle Scholar
  2. 2.
    Hu ZL, Liu HD (2015) Three-dimensional CuO microflowers as anode materials for Li-ion batteries. Ceram Int 41(6):8257–8260CrossRefGoogle Scholar
  3. 3.
    Wang RH, Xu CH, Du M, Sun J, Gao L, Zhang P, Yao HL, Lin CC (2014) Solvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-Storage and excellent stability. Small 10(11):2260–2269CrossRefPubMedGoogle Scholar
  4. 4.
    Xing LL, Deng P, He B, Nie YX, Wu XL, Yuan S, Cui CX, Xue XY (2014) Assembly of FeWO4-SnO2 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes. Electrochim Acta 118:45–50CrossRefGoogle Scholar
  5. 5.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang LS, Wang ZH, Wang LZ, Xing Y, Li XF, Zhang Y (2014) Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery. Appl Surf Sci 305:179–185CrossRefGoogle Scholar
  7. 7.
    Chai XH, Shi CS, Liu EZ, Li JJ, Zhao NQ, He CN (2015) Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability. Appl Surf Sci 347:178–185CrossRefGoogle Scholar
  8. 8.
    Lübke M, Makwana NM, Gruar R, Tighe C, Brett D, Shearing P, Liu ZL, Darr JA (2015) High capacity nanocomposite Fe3O4/Fe anodes for Li-ion batteries. J Power Sources 291:102–107CrossRefGoogle Scholar
  9. 9.
    Chen MH, Xia XH, Yin JH, Chen QG (2015) Construction of Co3O4 nanotubes as high-performance anode material for lithium ion batteries. Electrochim Acta 160:15–21CrossRefGoogle Scholar
  10. 10.
    Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl Mater Interfaces 6:680−690CrossRefGoogle Scholar
  11. 11.
    Zhang JF, Pan JG, Shao LY, Shu J, Zhou MJ, Pan JG (2014) Micro-sized cadmium tungstate as a high-performance anode material for lithium-ion batteries. J Alloys Compd 614:249–252CrossRefGoogle Scholar
  12. 12.
    Pullar RC, Farrah S, McN N (2007) MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. Alford J Eur Ceram Soc 27(2-3):1059–1063CrossRefGoogle Scholar
  13. 13.
    García-Pérez UM, Cruz AM, Peralc J (2012) Transition metal tungstates synthesized by co-precipitation method: basic photocatalytic properties. Electrochim Acta 81:227–232CrossRefGoogle Scholar
  14. 14.
    Ungelenk J, Speldrich M, Dronskowski R, Feldmanna C (2014) Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M¼Mn, Fe, Co, Ni, Cu, Zn). Solid State Sci 31:62–69CrossRefGoogle Scholar
  15. 15.
    Ling C, Zhou LQ, Jia HF (2014) First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv 4(47):24692–24697CrossRefGoogle Scholar
  16. 16.
    Castillo TR, JS G’r, Ortiz AL, VC M’n (2013) Global kinetic evaluation during the reduction of CoWO4 with methane for the production of hydrogen. Int J Hydrog Energy 38(28):12519–12526CrossRefGoogle Scholar
  17. 17.
    Yu P, Wang L, Liu X, Fu HG, Yu HT (2017) CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Metals 36(5):411–417CrossRefGoogle Scholar
  18. 18.
    Greenn SV, Granqvist CG, Niklasson GA (2014) Structure and optical properties of electrochromic tungsten-containing nickel oxidefilms. Sol Energy Mater Sol Cells 126:248–259CrossRefGoogle Scholar
  19. 19.
    Chen G, Rodriguez R, Fei L, Xu Y, Deng SG, Smirnov S, Luo HM (2014) A facile hydrothermal route to Fe2O3 with conductive additives as composite anode for lithium ion batteries. J Power Sources 259:227–232CrossRefGoogle Scholar
  20. 20.
    Fu M, Jiao QZ, Zhao Y (2014) One-step vapor diffusion synthesis of uniform CdS quantum dots/reduced graphene oxide composites as efficientvisible-light photocatalyst. RSC Adv 4(44):23242–23250CrossRefGoogle Scholar
  21. 21.
    Zhang M, Yan FL, Tang X, Li QH, Wang TH, Cao GZ (2014) Flexible CoO-graphene-carbon nanofiber mats as binder-free anodes for lithium-ion batteries with superior rate capacity and cyclic stability. J Mater Chem A 2(16):5890–5897CrossRefGoogle Scholar
  22. 22.
    Sun CW, Li F, Ma C, Wang Y, Ren YL, Yang W, Ma ZH, Li JQ, Chen YJ, Kim Y, Chen LQ (2014) Graphene-Co3O4 nanocomposite as an efficient bifunctional catalyst for lithium-air batteries. J Mater Chem A 2(20):7188–7196CrossRefGoogle Scholar
  23. 23.
    Guo R, Yue WB, An YM, Ren Y, Yan X (2014) Graphene-encapsulated porous carbon-ZnO composites as highperformance anode materials for Li-ion batteries. Electrochim Acta 135:161–167CrossRefGoogle Scholar
  24. 24.
    Ren JG, Wang CD, Wu QH, Liu X, Yang Y, Fang L, Zhang WJ (2014) A silicon nanowire–reduced graphene oxide composite as a high-performance lithium ion battery anode material. Nano 6:3353–3360Google Scholar
  25. 25.
    Li SM, Wang B, Liu JH, Yu M (2014) In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for lithium-ion batteries. Electrochim Acta 129:33–39CrossRefGoogle Scholar
  26. 26.
    Xu XD, Jeong S, Rout CS, Oh P, Ko M, Kim H, Kim MG, Cao RG, Cho HSJ (2014) Lithium reaction mechanism and high rate capability of VS4-graphene nanocomposite for lithium battery anode material. J Mater Chem A 2(28):10847–10853CrossRefGoogle Scholar
  27. 27.
    Li ZT, Wu GL, Liu D, Wu WT, Jiang B, Zheng JT, Li YP, Li JH, Wu MB (2014) Graphene enhanced carbon-coated tin dioxide nanoparticles for lithium-ion secondary battery. J Mater Chem A 2(20):7471–7477CrossRefGoogle Scholar
  28. 28.
    Zhen L, Wang WS, Xu CY, Shao WZ, Qin LC (2008) A facile hydrothermal route to the large-scale synthesis of CoWO4 nanorods. Mater Lett 62(10-11):1740–1742CrossRefGoogle Scholar
  29. 29.
    Thongtema S, Wannapop S, Thongtem T (2009) Characterization of CoWO4 nano-particles produced using the spray pyrolysis. Ceram Int 35(5):2087–2091CrossRefGoogle Scholar
  30. 30.
    Li LZ, Chen MX, Huang GB, Yang N, Zhang L, Wang H, Liu Y, Wang W, Gao JP (2014) A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. J Power Sources 263:13–21CrossRefGoogle Scholar
  31. 31.
    Na HY, Zhang L, Qiu HX, Wu T, Chen MX, Yang N, Li LZ, Xing FB, Gao JP (2015) A two step method to synthesize palladiumecopper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Power Sources 288:160–167CrossRefGoogle Scholar
  32. 32.
    Jia HF, Stark J, Zhou LQ, Ling C, Sekito T, Markin Z (2012) Different catalytic behavior of amorphous and crystalline cobalt tungstate for electrochemical water oxidation. RSC Adv 2(29):10874–10881CrossRefGoogle Scholar
  33. 33.
    Zhang CL, Guo DL, Hu CG, Chen YX, Hong L, Zhang HL, Wang X (2013) Large-scale synthesis and photoluminescence of cobalt tungstate nanowires. Phys Rev B 87(3):35416CrossRefGoogle Scholar
  34. 34.
    Li FH, Guo YQ, Liu Y, Qiu HX, Sun XY, Wang W, Liu Y, Gao JP (2013) Fabrication of Pt–Cu/RGO hybrids and their electrochemical performance for the oxidation of methanol and formic acid in acid media. Carbon 64:11–19CrossRefGoogle Scholar
  35. 35.
    Zhang X, Liu HH, Petnikota S, Ramakrishna S, Fan HJ (2014) Electrospun Fe2O3–carbon composite nanofibers as durable anode materials for lithium ion batteries. J Mater Chem A 2(28):10835–10841CrossRefGoogle Scholar
  36. 36.
    Shi NX, Xiong SL, Wu FF, Bai J, Chu YT, Mao HZ, Feng JK, Xi BJ (2017) Hydrothermal synthesis of ZnWO4 hierarchical hexangular microstars for enhanced lithium-storage properties. Eur J Inorg Chem 2017(3):734–740CrossRefGoogle Scholar
  37. 37.
    Shim HW, Cho IS, Hong KS, Lim AH, Kim DW (2011) Wolframite-type ZnWO4 nanorods as new anodes for Li-ion batteries. J Phys Chem C 115(32):16228–16233CrossRefGoogle Scholar
  38. 38.
    Li BS, Feng JK, Qian YT, Xiong SL (2015) Mesoporous quasi-single-crystalline NiCo2O4 superlattice nanoribbons with optimizable lithium storage properties. J Mater Chem A 3(19):10336–10344CrossRefGoogle Scholar
  39. 39.
    Ye Y, Wu P, Zhang X, Zhou T, Tang YW, Zho YM, Lu TH (2014) Facile synthesis of graphene supported FeSn2 nanocrystals with enhanced li-storage capability. RSC Adv 4:17401C17404Google Scholar
  40. 40.
    Qiu BC, Xing MY, Zhang JL (2014) Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc 136(16):5852–5855CrossRefPubMedGoogle Scholar
  41. 41.
    Geng H, Kong SF, Wang Y (2014) NiS nanorods-assembled nanoflower grown on graphene: morphology evolution and li-ion storage application. J Mater Chem A 2(36):15152–15158CrossRefGoogle Scholar
  42. 42.
    Hong W, Li LZ, Xue RN, Xu XY, Wang H, Zhou JK, Zhao HL, Song YH, Liu Y, Gao JP (2017) One-pot hydrothermal synthesis of zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 485:175–182CrossRefPubMedGoogle Scholar
  43. 43.
    Zhang GQ, Wu HB, Song T, Paik U, Wen X (2014) TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew Chem Int Ed 53(46):12590–12593Google Scholar
  44. 44.
    Yu YJ, Yue C, Sun SB, Lin W, Su H, Xu BB, Li JT, Wu ST, Li J, Kang JY (2014) The effects of different core−shell structures on the electrochemical performances of Si−Ge nanorod arrays as anodes for micro-lithium ion batteries. ACS Appl Mater Interfaces 6(8):5884–5890CrossRefPubMedGoogle Scholar
  45. 45.
    Wang N, Liu QL, Kang DM, Gu JJ, Zhang W, Zhang D (2016) Facile self-cross-linking synthesis of 3D nanoporous Co3O4/carbon hybrid electrode materials for supercapacitors. ACS Appl Mater Interfaces 8:16035–16044CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of Biotechnology and Food ScienceTianjin University of CommerceTianjinPeople’s Republic of China
  2. 2.Sichuan Province Metal Fuel Cell Key LaboratoryDeyangPeople’s Republic of China
  3. 3.School of ScienceTianjin UniversityTianjinPeople’s Republic of China
  4. 4.Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations