CaF2 thin films obtained by electrochemical processes and the effect of Tb3+ doping concentration on their structural and optical properties

  • Ma. Estela Calixto
  • Antonio Méndez-Blas
  • Bernabé Mari-Soucase
Original Paper
  • 5 Downloads

Abstract

In this study, we analyze the effect of Tb3+ concentration on the structural and optical properties of CaF2 terbium-doped thin films deposited on soda-lime glass substrates with an indium tin oxide (ITO)-sputtered coating by means of electrochemical processes. Compositional results showed that thin films have excess of F, which is believed to be the source for defect formation. XRD results showed not only shifting and widening of the CaF2 peaks as a function of [Tb3+] increase in the electrolitic solution but also an additional peak when high [Tb3+] are used, promoting thus the formation of secondary phases such as NaTbF4. According to photoluminescence (PL) results, when using UV excitation (λ = 325 nm), CaF2:Tb3+ thin films presented green emission (5D4 → 7FJ, where J = 6, 5, 4, 3, 2, 1, 0). Besides, PL studies not only allowed us to establish the quenching for Tb3+ concentration in the CaF2 matrix, but they also showed that there are no changes in intensity or peak position attributed to the presence of cubic NaTbF4 because its emission coincides with that of CaF2 terbium-doped thin films.

Graphical abstract

Increase of [Tb3+] in the CaF2 solution and the presence of Na+ promotes a competition effect between CaF2:Tb3+ and NaTbF4 phases under equal deposition conditions

Keywords

Calcium fluoride Thin films Lanthanides Electrodeposition 

References

  1. 1.
    Kaminskii AA (1996) Crystalline lasers: physical processes and operating schemes. CRC Press, New YorkGoogle Scholar
  2. 2.
    Bendall PJ, Catlow CRA, Corish J, Jacobs PWM (1984) J Solid State Chem 51(2):159–169CrossRefGoogle Scholar
  3. 3.
    Laval JP, Abaouz A, Frit B, Le Bail A (1990) J Solid State Chem 85(1):133–143CrossRefGoogle Scholar
  4. 4.
    Sullivan PW, Farrow RFC, Jones GR (1982) J Cryst Growth 60(2):403–413CrossRefGoogle Scholar
  5. 5.
    Yu-Zhang K, Leprince-Wang Y (1998) Mater Chem Phys 52(1):66–70CrossRefGoogle Scholar
  6. 6.
    Kim H, King AH (2007) J Mater Res 22:2012–2016CrossRefGoogle Scholar
  7. 7.
    Reeves RJ, Polley C, Choi JS (2009) J Lumin 129(12):1673–1676CrossRefGoogle Scholar
  8. 8.
    Lee CH, Qi J, Lee ST, Hung LS (2003) Diam Relat Mater 12(8):1335–1339CrossRefGoogle Scholar
  9. 9.
    Klust A, Bierkandt M, Wollschlager J, Muller BH, Schmidt T, Falta J (2002) Phys Rev B 65:193404-1–193404-4CrossRefGoogle Scholar
  10. 10.
    Wollschläger J, Hildebrandt T, Kayser R, Viernow J, Klust A, Bätjer J, Hille A, Schmidt T, Falta J (2000) Appl Surf Sci 162–163:309–318CrossRefGoogle Scholar
  11. 11.
    Pandey RK, Kumar M, Khan SA, Kumar T, Tripathi A, Avasthi DK, Pandey AC (2014) Appl Surf Sci 289:77–80CrossRefGoogle Scholar
  12. 12.
    Cook JG, Yousefi GH, Das SR, Mitchell DF (1992) Thin Solid Films 217(1–2):87–90CrossRefGoogle Scholar
  13. 13.
    Pilvi T, Arstila K, Leskelä M, Ritala M (2007) Chem Mater 19(14):3387–3392CrossRefGoogle Scholar
  14. 14.
    Çetin NE, Korkmaz S, Elmas S, Ekem N, Pat S, Balbag MZ, Tarhan E, Temel S, Özmumcu M (2013) Mater Lett 91:175–178CrossRefGoogle Scholar
  15. 15.
    Wang H, Liu R, Chen K, Shi X, Xu Z (2011) Thin Solid Films 519(19):6438–6442CrossRefGoogle Scholar
  16. 16.
    Méndez-Blas A, Rico M, Volkov V, Zaldo C, Cascales C (2007) Phys Rev B 75:174208-1–174208-14CrossRefGoogle Scholar
  17. 17.
    Chen Z, Geng Z, Shao D, Zhoua Z, Wang Z (2012) CrystEngComm 14:2251–2257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de FísicaBenemérita Universidad Autónoma de PueblaPueblaMéxico
  2. 2.IDF-Departament de Física AplicadaUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations