Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1129–1144 | Cite as

Biosensor for the oxidative stress biomarker glutathione based on SAM of cobalt phthalocyanine on a thioctic acid modified gold electrode

  • Mohammed Nooredeen AbbasEmail author
  • Ayman Ali Saeed
  • Mounir Ben Ali
  • Abdelhamid Errachid
  • Nadia Zine
  • Abdullatif Baraket
  • Baljit Singh
Original Paper
  • 177 Downloads

Abstract

Self-assembled monolayer (SAM) of cobalt teraaminophthalocyanine (CoTAPc) was developed on thioctic acid (TA) dithiol modified gold electrode and electrochemically evaluated as a glutathione (GSH) selective biosensor. The CoTAPc-TA-Au modified electrode was developed by the covalent immobilization of the CoTAPc as the electrochemical mediator onto previously prepared gold electrode modified with TA (TA-Au) via amid bond formation with the carboxylic group of TA, producing well-organized SAM of the mediator. For comparison, another electrode modified with 3-mercaptopropionic acid (MPA) as a monothiol linker instead of TA was similarly prepared. The electrode surface modification was characterized using SEM, AFM, CV, and EIS. The contact angle measurements of the surface confirmed the formation of CoTAPc SAM on both TA and MPA modified electrodes. The CoTAPc-TA-Au modified electrode showed enhanced catalytic activity for GSH oxidation compared to that of CoTAPc-MPA-Au, indicating that the TA dithiol allowed for more coverage of the catalyst layer on the electrode surface with stronger binding. The experimental parameters controlling the voltammetric processes like scan rate and pH of sample solution were optimized. Using DPV technique, the proposed sensor exhibited a linear response of oxidation peak current vs. GSH concentration, over the concentration range between 10 and 100 μmol L−1 with a LOD of 1.5 μmol L−1 for the CoTAPc-TA-Au modified electrode compared to 5.5 μmol L−1 GSH, for the CoTAPc-MPA-Au electrode. The proposed sensor was utilized for detection of glutathione in some hemolyzed blood samples.

Graphical abstract

Keywords

Glutathione Biosensor SAM Thioctic acid Cobalt phthalocyanine 

Notes

Acknowledgements

The authors thank the EU for supporting this work through FP7 Marie Curie IRSES Project: Micro/nano sensors for early cancer warning system–diagnostic and prognostic information “SMARTCANCERSENS.”

Supplementary material

10008_2018_4191_MOESM1_ESM.docx (82 kb)
ESM 1 (DOCX 82 kb)

References

  1. 1.
    Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52(1):711–760CrossRefPubMedGoogle Scholar
  2. 2.
    Giustarini D, Dalle-Donne I, Tsikas D, Rossi R (2009) Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46(5-6):241–281CrossRefPubMedGoogle Scholar
  3. 3.
    Leonel C, Gelaleti GB, Jardim BV, Moschetta MG, Regiani VR, Oliveira JG, Zuccari DAPC (2014) Expression of glutathione, glutathione peroxidase and glutathione S-transferase pi in canine mammary tumors. BMC Vet Res 10(1):49–58CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333(1):19–39CrossRefPubMedGoogle Scholar
  5. 5.
    Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57(3-4):145–155CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rossi R, Dalle-Donne I, Milzani A, Giustarin D (2006) Oxidized forms of glutathione in peripheral blood as biomarkers of oxidative stress. Clin Chem 52(7):1406–1414CrossRefPubMedGoogle Scholar
  7. 7.
    Castejon AM, Spaw JA (2014) Autism and oxidative stress interventions: impact on autistic behavior. Austin J Pharmacol Ther 2:6–11Google Scholar
  8. 8.
    Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S, Ko Y, Veledar E, Samady H, Zafari AM, Sperling L, Vaccarino V, Jones DP, Quyyum AA (2016) Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation 133(4):361–369CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Toyo’oka T (2009) Recent advances in separation and detection methods for thiol compounds in biological samples. J Chromatogr B 877(28):3318–3330CrossRefGoogle Scholar
  10. 10.
    Harfield JC, Batchelor-McAuley C, Compton RG (2012) Electrochemical determination of glutathione: a review. Analyst 137(10):2285–2296CrossRefPubMedGoogle Scholar
  11. 11.
    Bai S, Chen Q, Lu C, Lin JM (2013) Automated high performance liquid chromatography with on-line reduction of disulfides and chemiluminescence detection for determination of thiols and disulfides in biological fluids. Anal Chim Acta 768:96–101CrossRefPubMedGoogle Scholar
  12. 12.
    Schlereth DD, Katz E, Schmidt HL (1994) Toluidine blue covalently immobilized onto gold electrode surfaces: an electrocatalytic system for nadh oxidation. Electroanalysis 6(9):725–734CrossRefGoogle Scholar
  13. 13.
    Willner I, Riklin A (1994) Electrical communication between electrodes and NAD(P)+-dependent enzymes using pyrroloquinolinequinone-enzyme electrodes in a self-assembled monolayer configuration: design of a new class of amperometric biosensors. Anal Chem 66(9):1535–1539CrossRefGoogle Scholar
  14. 14.
    Collinson M, Bowden EF, Tarlov MJ (1992) Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes. Langmuir 8(5):1247–1250CrossRefGoogle Scholar
  15. 15.
    Duan C, Meyerhoff ME (1994) Separation-free sandwich enzyme immunoassays using microporous gold electrodes and self-assembled monolayer/immobilized capture antibodies. Anal Chem 66(9):1369–1377CrossRefPubMedGoogle Scholar
  16. 16.
    Widrig CA, Chung C, Porter M (1991) The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J Electroanal Chem 310(1-2):335–359CrossRefGoogle Scholar
  17. 17.
    Gatto E, Stella L, Formaggio F, Toniolo C, Lorenzelli L, Venanzi M (2008) Electroconductive and photocurrent generation properties of self-assembled monolayers formed by functionalized, conformationally-constrained peptides on gold electrodes. J Peptide Sci 14(2):184–191CrossRefGoogle Scholar
  18. 18.
    Koufaki M, Detsi A, Kiziridi C (2009) Multifunctional lipoic acid conjugates. Curr Med Chem 16(35):4728–4742CrossRefPubMedGoogle Scholar
  19. 19.
    Saeed AA, Singh B, Abbas MN, Issa YM, Dempsey E (2015) Electrocatalytic nitrite determination using iron phthalocyanine modified gold nanoparticles. Electroanal 27(5):1086–1096CrossRefGoogle Scholar
  20. 20.
    Abbas MN, Saeed AA, Singh B, Radowan AA, Dempsey E (2015) A cysteine sensor based on a gold nanoparticle–iron phthalocyanine modified graphite paste electrode. Anal Methods 7(6):2529–2536CrossRefGoogle Scholar
  21. 21.
    Mashazi PN, Ozoemena KI, Nyokong T (2006) Tetracarboxylic acid cobalt phthalocyanine SAM on gold: potential applications as amperometric sensor for H2O2 and fabrication of glucose biosensor. Electrochim Acta 52(1):177–186CrossRefGoogle Scholar
  22. 22.
    Pereira-Rodrigues N, Cofré R, Zagal JH, Bedioui F (2007) Electrocatalytic activity of cobalt phthalocyanine CoPc adsorbed on a graphite electrode for the oxidation of reduced l-glutathione (GSH) and the reduction of its disulfide (GSSG) at physiological pH. Bioelectrochem 70(1):147–154CrossRefGoogle Scholar
  23. 23.
    Xu H, Xiao J, Liu B, Griveau S, Bedioui F (2015) Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 66:438–444CrossRefPubMedGoogle Scholar
  24. 24.
    Hosseini H, Mahyari M, Bagheri A, Shaabani A (2014) A novel bioelectrochemical sensing platform based on covalently attachment of cobalt phthalocyanine to graphene oxide. Biosens Bioelectron 52:136–142CrossRefPubMedGoogle Scholar
  25. 25.
    Wang X, Chen X, Evans DG, Yang WS (2011) A novel biosensor for reduced l-glutathione based on cobalt phthalocyaninetetrasulfonate-intercalated layered double hydroxide modified glassy carbon electrodes. Sensors Actuators B Chem 160(1):1444–1449CrossRefGoogle Scholar
  26. 26.
    Honeychurch KC, Hart JP (2012) The chronoamperometric and voltammetric behaviour of glutathione at screen-printed carbon micro-band electrodes modified with cobalt phthalocyanine. Adv Anal Chem Instrum 2:46–52Google Scholar
  27. 27.
    Sehlotho N, Griveau S, Ruillé N, Boujtita M, Nyokong T, Bedioui F (2008) Electro-catalyzed oxidation of reduced glutathione and 2-mercaptoethanol by cobalt phthalocyanine-containing screen printed graphite electrodes. Mater Sci Eng C 28(5-6):606–612CrossRefGoogle Scholar
  28. 28.
    NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version. 3.5,by C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, http://srdata.nist.g
  29. 29.
    Achar BN, Fohlen GM, Parker JA, Keshavayya J (1987) Synthesis and structural studies of metal(II) 4,9,16,23-phthalocyanine tetraamines. Polyhedron 6(6):1463–1467CrossRefGoogle Scholar
  30. 30.
    Willey TM, Vance AL, Bostedt C, van Buuren T, Meulenberg RW, Terminello LJ, Fadley CS (2004) Surface structure and chemical switching of thioctic acid adsorbed on au(111) as observed using near-edge X-ray absorption fine structure. Langmuir 20(12):4939–4944CrossRefPubMedGoogle Scholar
  31. 31.
    Matemadombo F, Westbroek P, Nyokong T, Ozoemena K, De Clerck K, Kiekens P (2007) Immobilization of tetra-amine substituted metallophthalocyanines at gold surfaces modified with mercaptopropionic acid or DTSP-SAMs. Electrochim Acta 52(5):2024–2031CrossRefGoogle Scholar
  32. 32.
    Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61(46):10827–10852CrossRefGoogle Scholar
  33. 33.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronics Division, Eden PrairieGoogle Scholar
  34. 34.
    Briggs D, Seah MP (1990) Practical surface analysis, 2nd edn. Wiley & Sons, ChichesterGoogle Scholar
  35. 35.
    Fang Z, Liu L, Xu L, Yin X, Zhong X (2008) Synthesis of highly stable dihydrolipoic acid capped water-soluble CdTe nanocrystals. Nanotech 19(23):235603CrossRefGoogle Scholar
  36. 36.
    Campuzano S, Pedrero M, Montemayor C, Fatás E, Pingarrón JM (2006) Characterization of alkanethiol-self-assembled monolayers-modified gold electrodes by electrochemical impedance spectroscopy. J Electroanal Chem 586(1):112–121CrossRefGoogle Scholar
  37. 37.
    Braik M, Dridi C, Ali A, Abbas MN, Ben Ali M, Errachid A (2015) Development of a perchlorate sensor based on Co-phthalocyanine derivative by impedance spectroscopy measurements. Org Electron 16:77–86CrossRefGoogle Scholar
  38. 38.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212CrossRefPubMedGoogle Scholar
  39. 39.
    Tian F, Gourine AV, Huckstepp RTR, Dale N (2009) Anal Chim Acta 645(1-2):86–91CrossRefPubMedGoogle Scholar
  40. 40.
    Laviron E (1979) J Electroanal Chem 100(1-2):263–270CrossRefGoogle Scholar
  41. 41.
    Prodromidis MI, Florou AB, Tzouwara-Karayanni SM, Karayannis MI (2000) The importance of surface covering in the electrochemical study of electrochemically modified electrodes. Electroanal 12(18):1498–1500CrossRefGoogle Scholar
  42. 42.
    Gulppi MA, Páez MA, Costamagna JA, Cárdenas-Jirón G, Bedioui F, Zagal JH (2005) Inverted correlations between rate constants and redox potential of the catalyst for the electrooxidation of 2-aminoethanethiol mediated by surface confined substituted cobalt-phthalocyanines. J Electroanal Chem 580(1):50–56CrossRefGoogle Scholar
  43. 43.
    Raoof JB, Ojani R, Baghayeri M (2009) Simultaneous electrochemical determination of glutathione and tryptophan on a nano-TiO2/ferrocene carboxylic acid modified carbon paste electrode. Sensors Actuators B 143(1):261–269CrossRefGoogle Scholar
  44. 44.
    Lenton KJ, Therriault H, Cantin AM, Fülöp T, Payette H, Wagner JR (2000) Direct correlation of glutathione and ascorbate and their dependence on age and season in human lymphocytes. Am J Clin Nutr 71(5):1194–1200CrossRefPubMedGoogle Scholar
  45. 45.
    Chung JS, Haque R, Mazumder DNG, Moore LE, Ghosh N, Samanta S, Mitra S, Hira-Smith MM, von Ehrenstein O, Basu A, Liaw J, Smith AH (2006) Blood concentrations of methionine, selenium, beta-carotene, and other micronutrients in a case-control study of arsenic-induced skin lesions in West Bengal, India. Environ Res 101(2):230–237CrossRefPubMedGoogle Scholar
  46. 46.
    Bridgeman MME, Marsden M, MacNee W, Flenley DC, Ryle AP (1991) Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax 46(1):39–42CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Singh M, Jaiswal N, Tiwari I, Foster CW, Banks CE (2018) A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J Electroanal Chem 829:230–240CrossRefGoogle Scholar
  48. 48.
    Hernández-Ibánez N, Sanjuán I, Montiel MÁ, Foster CW, Banks CE, Iniesta J (2016) L-Cysteine determination in embryo cell culture media using Co(II)-phthalocyanine modified disposable screen-printed electrodes. J Electroanal Chem 780:303–310CrossRefGoogle Scholar
  49. 49.
    Ziyatdinova G, Kozlova E, Budnikov H (2018) Selective electrochemical sensor based on the electropolymerized pcoumaric acid for the direct determination of L-cysteine. Electrochim Acta 270:369–377CrossRefGoogle Scholar
  50. 50.
    Kurniawan A, Kurniawan F, Gunawan F, Chou SH, Wang MJ (2019) Disposable electrochemical sensor based on copper-electrodeposited screen-printed gold electrode and its application in sensing L-Cysteine. Electrochim Acta 293:318–327CrossRefGoogle Scholar
  51. 51.
    Premlatha S, Selvarani K, Bapu GNKR (2018) Facile electrodeposition of hierarchical co-Gd2O3 nanocomposites for highly selective and sensitive electrochemical sensing of L–cysteine. ChemistrySelect 3(9):2665–2674CrossRefGoogle Scholar
  52. 52.
    Moore RR, Banks CE, Compton RG (2004) Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. Analyst 129(8):755–758CrossRefPubMedGoogle Scholar
  53. 53.
    Tang H, Chen J, Nie L, Yao S, Kuang Y (2006) Electrochemical oxidation of glutathione at well aligned carbon nanotube array electrode. Electrochim Acta 51(15):3046–3051CrossRefGoogle Scholar
  54. 54.
    Rover LR Jr, Kubota LT, Hoehr NF (2001) Development of an amperometric biosensor based on glutathione peroxidase immobilized in a carbodiimide matrix for the analysis of reduced glutathione from serum. Clin Chim Acta 308(1-2):55–67CrossRefPubMedGoogle Scholar
  55. 55.
    Gong KP, Zhang MN, Yan YM, Su L, Mao LQ, Xiong SX, Chen Y (2004) Sol-gel-derived ceramic-carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal Chem 76(21):6500–6505CrossRefPubMedGoogle Scholar
  56. 56.
    Abiman P, Wildgoose GG, Compton RG (2007) Electroanalytical exploitation of nitroso phenyl modified carbon-thiol interactions: application to the low voltage determination of thiols. Electroanal 19(4):437–444CrossRefGoogle Scholar
  57. 57.
    Olmos Moya PM, Martínez Alfaro M, Kazemi R, Alpuche-Avilés MA, Griveau S, Bedioui F, Gutiérrez Granados S (2017) Simultaneous electrochemical speciation of oxidized and reduced glutathione. Redox profiling of oxidative stress in biological fluids with a modified carbon electrode. Anal Chem 89(20):10726–10733CrossRefPubMedGoogle Scholar
  58. 58.
    Yuan B, Zhang R, Jiao X, Li J, Shi H, Zhang D (2014) Amperometric determination of reduced glutathione with a new Co-based metal-organic coordination polymer modified electrode. Electrochem Commun 40:92–95CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electroanal. Lab., Applied Organic Chemistry DepartmentNational Research Centre (NRC)GizaEgypt
  2. 2.Université de Sousse, ISSAT de SousseIbn Khaldoun SousseTunisia
  3. 3.Institut des Sciences Analytiques (ISA), Université de Lyon, Université de Claude Bernard Lyon 1, UMR 5280VilleurbanneFrance
  4. 4.MiCRA Biodiagnostics Technology GatewayInstitute of Technology TallaghtDublin 24Ireland

Personalised recommendations