Highly sensitive determination of salicylic acid in skin care product by means of carbon nanotube/iron oxide nanoparticle voltammetric sensors

  • Camila de Lima Ribeiro
  • João G. M. Santos
  • Jurandir R. Souza
  • Leonardo G. PaternoEmail author
Original Paper


The present work reports the performance and the mechanism of detection of a voltammetric sensor for salicylic acid (SA) in a skin care product employing a carbon nanotube/iron oxide nanoparticle (SWCNT/ION) modified electrode. The coupling between Fe(III) → Fe(II) and SA → SA (radical) half-cell reactions at the surface of SWCNT/ION and the enlarged surface area are harnessed to enhance the sensor’s sensitivity. By means of differential pulse voltammetry under optimized conditions, the performance of the (SWCNT/ION) provided the following figure of merit: two linear working ranges 0.6–2.9 μmol/L (r2 = 0.996) and 2.9–46.3 μmol/L (r2 = 0.995), sensitivity 0.64 μA cm−2/μmol L−1, limit of detection (LOD) (3Sb/b) 0.02 μmol/L, and limit of quantification (10Sb/b) 0.07 μmol/L. The LOD is lower than most of the electroanalytical methodologies found in the literature. The determination of SA in a skin care product shows no difference, at 95% confidence level (Student’s t test), to that performed with HPLC/UV-Vis. Moreover, a single modified electrode can be used for at least 18 consecutive runs while losing less than 10% of its sensitivity. The sensitivity difference between electrodes made in different batches is only 5.4%.


Salicylic acid Skin care product Electroanalytical method Carbon nanotubes Iron oxide nanoparticles Layer-by-layer 



The authors thank the support of Dr. Marcelo A. Pereira-da-Silva (IFSC-USP) with atomic force microscopy and Professor Maria A. G. Soler (IF-UnB) with Raman spectroscopy.


Financial support was given by Brazilian funding agencies CNPq and FAP-DF (process no. 0193.000829/2015) and FINEP (process no. 01/13/0470/00). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Supplementary material

10008_2018_4189_MOESM1_ESM.pdf (235 kb)
ESM 1 (PDF 235 kb)


  1. 1.
    Duthie GG, Wood AD (2011) Natural salicylates: foods, functions and disease prevention. Food Funct 2(9):515–520Google Scholar
  2. 2.
    Pulgarín JAM, Molina AA, Robles IS (2011) Simultaneous determination of salicylic acid and salicylamide in biological fluids. Spectrochim Acta A 79(5):909–914Google Scholar
  3. 3.
    Chocholouš P, Holík P, Šatínský D, Solich P (2007) A novel application of onyx™ monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography. Talanta 72(2):854–858Google Scholar
  4. 4.
    Madan RK, Levitt J (2014) A review of toxicity from topical salicylic acid preparations. J Am Dermatol 70(4):788–792Google Scholar
  5. 5.
    Youssef RM, Korany MA, Afify MA (2014) Development of a stability indicating HPLC-DAD method for the simultaneous determination of mometsone furoate and salicylic acid in an ointment matrix. Anal Methods 6(10):3410–3419Google Scholar
  6. 6.
    Ruiz-Medina A, Cordóva MLF, Ortega-Barrales P, Molina-Díaz A (2001) Flow-through UV spectrophotometric sensor for determination of (acetyl)salicylic acid in pharmaceutical preparations. Int J Pharm 216(1-2):95–104Google Scholar
  7. 7.
    Eksi-Kocak H, Tamer SI, Yilmaz S, Eryilmaz M, Boyaci IH, Tamer U (2018) Quantification and spatial distribution of salicylic acid in film tablets using FT-Raman mapping with multivariate curve resolution. Asian J Pharm Sci 13(2):155–162Google Scholar
  8. 8.
    Huang Z, Wang Z, Shi B, Wei D, Chen J, Wang S, Gao B (2015) Simultaneous determination of salicylic acid, jasmonic acid, methyl salicylate, and methyl jasmonate from Ulmus pumila leaves by GC-MS. Int J Anal Chem 2015:1–7Google Scholar
  9. 9.
    Silva GS, Lima DLD, Esteves VI (2017) Salicylic acid determination in estuarine and riverine waters using hollow fiber liquid-phase microextraction and capillary zone electrophoresis. Environ Sci Pollut Res 24(18):15748–15755Google Scholar
  10. 10.
    Sivula K, Formal FL, Grätzel M (2011) Solar water splitting : Progress using hematite (α-Fe2 O3) Photoelectrodes. ChemSusChem 4(4):432–449Google Scholar
  11. 11.
    Wang D, Li Y, Wang Q, Wang T (2012) Nanostructured Fe2O3 – graphene composite as a novel electrode material for supercapacitors. J Solid State Electrochem 16(6):2095–2102Google Scholar
  12. 12.
    Yin H, Zhou Y, Liu T, Tang T, Ai S, Zhu L (2012) Determination aminopyrine in pharmaceutical formulations based on APTS-Fe3O4 nanoparticles modified glassy carbon electrode. J Solid State Electrochem 16(2):731–738Google Scholar
  13. 13.
    Chumming J, Xiangqin L (2009) Electrochemical synthesis of Fe3O4-PB nanoparticles with core-shell structure and its electrocatalytic reduction toward H2O2. J Solid State Electrochem 13(8):1273–1278Google Scholar
  14. 14.
    Hu Y, Zhang Z, Zhang H, Luo L, Yao S (2012) Selective and sensitive molecularly imprinted sol–gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4 @ au–multi-walled carbon nanotubes–chitosan. J Solid State Electrochem 16(3):857–867Google Scholar
  15. 15.
    Alizadeh T, Jamshidi F (2015) Synthesis of nanosized sulfate-modified α-Fe2O3 and its use for the fabrication of all-solid-state carbon paste pH sensor. J Solid State Electrochem 19(4):1053–1062Google Scholar
  16. 16.
    Ramos JA, Fernandes EGR, Zucolotto V (2015) A peroxidase biomimetic system based on Fe3O4 nanoparticles in non-enzymatic sensors. Talanta 141:307–314Google Scholar
  17. 17.
    Wang Y, Zhang H, Yao D, Pu J, Zhang Y, Gao X, Sun Y (2013) Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide. J Solid State Electrochem 7:881–887Google Scholar
  18. 18.
    Yang S, Li G, Wang G, Deng D, Qu L (2015) A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 19(12):3613–3620Google Scholar
  19. 19.
    Wang X, You Z, Sha H, Sun Z, Sun W (2014) Electrochemical myoglobin biosensor based on carbon ionic liquid electrode modified with Fe3O4@SiO2 microsphere. J Solid State Electrochem 18(1):207–213Google Scholar
  20. 20.
    Zhang W, Wang L, Zheng X (2014) Indicator-free electrochemical genosensing originated from the self-signal of poly-xanthurenic acid enhanced by Fe3O4/reduced graphene oxide. J Solid State Electrochem 18(9):2367–2373Google Scholar
  21. 21.
    Mahendran V, Philip J (2013) Sensing of biologically important cations such as Na+, K+, Ca2+, Cu2+, and Fe3+ using magnetic nanoemulsions. Langmuir 29(13):4252–4258Google Scholar
  22. 22.
    Zhao G, Xu JJ, Chen HY (2006) Fabrication, characterization of Fe3O4 multilayer film and its application in promoting direct electron transfer of hemoglobin. Electrochem Commun 8(1):148–154Google Scholar
  23. 23.
    Belle CJ, Bonamin A, Simon U, Santoyo-Salazar J, Pauly M, Bégin-Colin S, Pourroy G (2011) Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sensors Actuators B 160(1):942–950Google Scholar
  24. 24.
    Singh V, Kaul S, Singla P, Kumar V, Sandhir R, Chung JH, Garg P, Singhal NK (2018) Xylanase immobilization on magnetite and magnetite core/shell nanocomposites using two different flexible alkyl length organophosphonates: linker length and shell effect on enzyme catalytic activity. Int J Biol Macromol 115:590–599Google Scholar
  25. 25.
    Oliveira TR, Martucci DH, Faria RC (2018) Simple disposable microfluidic device for Salmonella typhimurium detection by magneto-immunoassay. Sensors Actuators B 255:684–691Google Scholar
  26. 26.
    Costa MP, Andrade CAS, Montenegro RA, Melo FL, Oliveira MDL (2014) Self-assembled monolayers of mercaptobenzoic acid and magnetite nanoparticles as an efficient support for development of tuberculosis genosensor. J Colloid Interface Sci 433:141–148Google Scholar
  27. 27.
    Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022Google Scholar
  28. 28.
    Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sensors Actuators B 138(2):572–580Google Scholar
  29. 29.
    Santos JGM, Souza JR, Letti CJ, Soler MAG, Morais PC, Pereira-da-Silva MA, Paterno LG (2014) Iron oxide nanostructured electrodes for detection of copper ( II ) ions. J Nanosci Nanotechnol 14(9):6614–6623Google Scholar
  30. 30.
    Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Chemical Electrocatalytic detection of dopamine at single-walled carbon nanotubes–iron ( III ) oxide nanoparticles platform. Sensors Actuators B 148(1):93–102Google Scholar
  31. 31.
    Sun L, Feng Q, Yan Y, Pan Z, Li X, Song F, Yang H, Xu J, Bao N, Gu H (2014) Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves. Biosens Bioelectron 60:154–160Google Scholar
  32. 32.
    Zhang W, Xu B, Hong Y, Yu Y, Ye J, Zhang J (2010) Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. J Solid State Electrochem 14(9):1713–1718Google Scholar
  33. 33.
    Lu S, Bai L, Wen Y, Li M, Yan D, Zhang R, Chen K (2015) Water-dispersed carboxymethyl cellulose-montmorillonite-single walled carbon nanotube composite with enhanced sensing performance for simultaneous voltammetric determination of two trace phytohormones. J Solid State Electrochem 19(7):2023–2037Google Scholar
  34. 34.
    Ribeiro CL, Santos JGM, Souza JR, Pereira-da-Silva MA, Paterno LG (2017) Electrochemical oxidation of salicylic acid at ITO substrates modified with layer-by-layer films of carbon nanotubes and iron oxide nanoparticles. J Electroanal Chem 805:53–59Google Scholar
  35. 35.
    Lobo RFM, Pereira da Silva MA, Raposo M, Faria RM, ONJr O (1999) In situ thickness measurements of ultra-thin multilayer polymer films by atomic force microscopy. Nanotechnology 10(4):389–393Google Scholar
  36. 36.
    Kang YS, Risbud S, Rabolt JF, Stroeve P (1996) Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem Mater 8(9):2209–2211Google Scholar
  37. 37.
    Cornell RM, Schwertmann U (2003) The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. Wiley-VCH, GermanyGoogle Scholar
  38. 38.
    Torriero AAJ, Luco JM, Sereno L, Raba J (2004) Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta 62:247–254Google Scholar
  39. 39.
    Park J, Eun C (2016) Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes. Electrochim Acta 194:346–356Google Scholar
  40. 40.
    Chrzescijanska E, Wudarska E, Kusmierek E, Rynkowski J (2014) Study of acetylsalicylic acid electroreduction behavior at platinum electrode. J Electroanal Chem 713:17–21Google Scholar
  41. 41.
    Wang C, Shen M, Ding Y, Zhao D, Cui S, Li L (2017) Facile preparation of multilayer ultrathin films based on eriochrome black T/NiAl-layered double hydroxide nanosheet, characterization and application in amperometric detection of salicylic acid. J Electroanal Chem 785:131–137Google Scholar
  42. 42.
    Pletcher D, Greff R, Peat R, Peter LM, Robinson J (2010) Instrumental methods in electrochemistry. Woodhead Publishing, CambridgeGoogle Scholar
  43. 43.
    ICH Topic Q2 (R1) (2005) Validation of analytical procedures: text and methodology. Int Conf Harmon 1994(2005):17Google Scholar
  44. 44.
    Fisher FA, Yates F (1938) Statistical tables for biological, agricultural and medical research. Longman Group Ltd, OxfordGoogle Scholar
  45. 45.
    Doulache M, Benchettara A, Trari M (2014) Detection of salicylic acid by electrocatalytic oxidation at a nickel-modified glassy carbon electrode. J Anal Chem 69(1):51–56Google Scholar
  46. 46.
    Sun L, Pan Z, Xie J, Liu X, Sun F, Song F, Bao N, Gu H (2013) Electrocatalytic activity of salicylic acid on au@Fe3O4 nanocomposites modified electrode and its detection in tomato leaves infected with Botrytis cinereal. J Electroanal Chem 706:127–132Google Scholar
  47. 47.
    Ghoreishi SM, Kashani FZ, Khoobi A, Enhessari M (2015) Fabrication of a nickel titanate nanoceramic modified electrode for electrochemical studies and detection of salicylic acid. J Mol Liq 211:970–980Google Scholar
  48. 48.
    Lu L, Zhu X, Qiu X, He H, Xu J, Wang X (2014) Graphene oxide/multiwalled carbon nanotubes composites as an enhanced sensing platform for voltammetric determination of salicylic acid. Int J Electrochem Sci 9:8057–8066Google Scholar
  49. 49.
    Alizadeh T, Nayeri S (2018) Electrocatalytic oxidation of salicylic acid at a carbon paste electrode impregnated with cerium-doped zirconium oxide nanoparticles as a new sensing approach for salicylic acid determination. J Solid State Electrochem 22(7):2039–2048Google Scholar
  50. 50.
    Rawlinson S, McLister A, Kanyong P, Davis J (2018) Rapid determination of salicylic acid at screen printed electrodes. Microchem J 137:71–77Google Scholar
  51. 51.
    Ganjali MR, Nejad FG, Tajik S, Beitollahi H, Pourbasheer E, Larijanii B (2017) Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode. Int J Electrochem Sci 12:9972–9982Google Scholar
  52. 52.
    Zhao C, Lin J (2017) Electrochemically reduced graphene oxide modified screen- printed electrodes for sensitive determination of acetylsalicylic acid. Int J Electrochem Sci 12:10177–10186Google Scholar
  53. 53.
    Derikvand H, Azadbakht A (2017) An impedimetric sensor comprising magnetic nanoparticles-graphene oxide and carbon nanotube for the electrocatalytic oxidation of salicylic acid. J Inorg Organomet Polym 27(4):901–911Google Scholar
  54. 54.
    Sivakumar M, Sakthivel M, Chen S, Veerakumar P, Liu S (2017) Sol-gel synthesis of carbon-coated LaCoO3 for effective electrocatalytic oxidation of salicylic acid. ChemElectroChem 4(4):935–940Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratório de Química Analítica e Ambiental, Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de QuímicaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations