Advertisement

Platinum nanoparticle induced nanoionic effects on electrical conduction in strontium cerate and zirconate

  • Yasuhiro TakamuraEmail author
  • Kwati Leonard
  • Aileen Luo
  • Lane W. Martin
  • Hiroshige Matsumoto
Original Paper
  • 70 Downloads

Abstract

Heterointerfaces introduce unique localized defects into ionic conductors. This study explores the nanoionic characteristics exhibited by the proton-conducting oxides SrZr0.9Y0.1O3-δ and SrCe0.95Yb0.05O3-δ including finely dispersed precipitated platinum nanoparticles. The electrical conductivity of both the platinum-doped oxides revealed reversible nanoionic phenomena caused by the exsolution of the platinum in the form of platinum nanoparticles, at 0.5 vol% relative to the metal oxides, and dissolution in response to a change in gas atmosphere. In comparison with the original conductivity of SrZr0.9Y0.1O3-δ and SrCe0.95Yb0.05O3-δ, the conductivity of platinum-doped SrZr0.9Y0.1O3-δ decreased significantly in a wet hydrogen atmosphere, whereas platinum-doped SrCe0.95Yb0.05O3-δ showed almost no decrease in conductivity in the same atmosphere. The different responses of the two materials to the change in gas atmosphere are discussed in relation to the precipitation of platinum nanoparticles.

Keywords

Proton conductor Nanoionics Platinum nanoparticle exsolution Heterointerfaces Transport number Work function 

Notes

Acknowledgements

This study was supported by World Premium International Research Center Initiative (WPI), MEXT, Japan and the Kyushu University Platform of Inter/Transdisciplinary Energy Research (Q-PIT), JSPS Core-to-Core Program, A. Advanced Research Networks, Partnerships for International Research and Education (PIRE) and A.L. and L.W.M. acknowledge support from the National Science Foundation under grant OISE-1545907. Dr. E. Kaveh of Kyushu University (WPI-I2CNER) is acknowledged for the measurement of TEM image of Pt-SCYb.

Supplementary material

10008_2018_4188_MOESM1_ESM.docx (601 kb)
ESM 1 (DOCX 600 kb)

References

  1. 1.
    Iwahara H (1996) Proton conducting ceramics and their applications. Solid State Ionics 86–88:9–15CrossRefGoogle Scholar
  2. 2.
    Duan C, Tong J, Shang M, Nikodemski S, Sanders M, Ricote S, Almansoori A, OHayre R (2015) Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science (80- ) 349(6254):1321–1326CrossRefGoogle Scholar
  3. 3.
    Bae K, Jang DY, Choi HJ, Kim D, Hong J, Kim BK, Lee JH, Son JW, Shim JH (2017) Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat Commun 8:14553CrossRefGoogle Scholar
  4. 4.
    Leonard K, Lee YS, Okuyama Y, Miyazaki K, Matsumoto H (2017) Influence of dopant levels on the hydration properties of SZCY and BZCY proton conducting ceramics for hydrogen production. Int J Hydrog Energy 42(7):3926–3937CrossRefGoogle Scholar
  5. 5.
    Maier J (2001) Ionic and electronic carriers in solids—physical and chemical views of the equilibrium situation. Solid State Ionics 143(1):17–23CrossRefGoogle Scholar
  6. 6.
    Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125(1-4):285–302CrossRefGoogle Scholar
  7. 7.
    Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815):946–949CrossRefGoogle Scholar
  8. 8.
    Maier J (2003) Defect chemistry and ion transport in nanostructured materials: part II. Aspects of nanoionics. Solid State Ionics 157(1-4):327–334CrossRefGoogle Scholar
  9. 9.
    Kuwata N, Sata N, Tsurui T, Yugami H (2005) Proton transport and microstructure properties in Superlattice thin films fabricated by pulsed laser deposition. Jpn J Appl Phys 44(12):8613–8618CrossRefGoogle Scholar
  10. 10.
    Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4(11):805–815CrossRefGoogle Scholar
  11. 11.
    Iwahara H, Yajima T, Hibino T et al (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61(1-3):65–69CrossRefGoogle Scholar
  12. 12.
    Uchida H, Maeda N, Iwahara H (1983) Relation between proton and hole conduction in SrCeO3-based solid electrolytes under water-containing atmospheres. Solid State Ionics 11(2):117–124CrossRefGoogle Scholar
  13. 13.
    Dahl PI, Haugsrud R, Lein HL, Grande T, Norby T, Einarsrud MA (2007) Synthesis, densification and electrical properties of strontium cerate ceramics. J Eur Ceram Soc 27(16):4461–4471CrossRefGoogle Scholar
  14. 14.
    Ricote S, Bonanos N, Caboche G (2009) Water vapour solubility and conductivity study of the proton conductor BaCe(0.9-x)ZrxY0.1O(3-δ). Solid State Ionics 180(14-16):990–997CrossRefGoogle Scholar
  15. 15.
    Phillips RJ, Bonanos N, Poulsen FW, Ahlgren EO (1999) Structural and electrical characterisation of SrCe1-xYxOξ. Solid State Ionics 125(1-4):389–395CrossRefGoogle Scholar
  16. 16.
    Bonanos N, Poulsen FW (1999) Considerations of defect equilibria in high temperature proton- conducting cerates. J Mater Chem 9(2):431–434CrossRefGoogle Scholar
  17. 17.
    Matsumoto H, Hamajima S, Yajima T, Iwahara H (2001) Electrochemical hydrogen pump using a high-temperature-type proton conductor: improvement of pumping capacity. Solid State Ionics 145(1-4):25–29CrossRefGoogle Scholar
  18. 18.
    Matsumoto H, Hamajima S, Yajima T, Iwahara H (2001) Electrochemical hydrogen pump using SrCeO3-based proton conductor: effect of water vapor at the cathode on the pumping capacity. J Electrochem Soc 148(10):D121CrossRefGoogle Scholar
  19. 19.
    Sakai T, Matsumoto H, Kudo T, Yamamoto R, Niwa E, Okada S, Hashimoto S, Sasaki K, Ishihara T (2008) High performance of electroless-plated platinum electrode for electrochemical hydrogen pumps using strontium-zirconate-based proton conductors. Electrochim Acta 53(28):8172–8177CrossRefGoogle Scholar
  20. 20.
    Matsumoto H, Furuya Y, Okada S, Tanji T, Ishihara T (2007) Nanoionics phenomenon in proton-conducting oxide: effect of dispersion of nanosize platinum particles on electrical conduction properties. Sci Technol Adv Mater 8(6):531–535CrossRefGoogle Scholar
  21. 21.
    Matsumoto H, Tanji T, Amezawa K, Kawada T, Uchimoto Y, Furuya Y, Sakai T, Matsuka M, Ishihara T (2011) Nanoprotonics in perovsikte-type oxides: reversible changes in color and ion conductivity due to nanoionics phenomenon in platinum-containing perovskite oxide. Solid State Ionics 182(1):13–18CrossRefGoogle Scholar
  22. 22.
    Matsumoto H, Shimura T, Iwahara H et al (2006) Hydrogen separation using proton-conducting perovskites. J Alloys Compd 408–412:456–462CrossRefGoogle Scholar
  23. 23.
    Sutija DP, Norby T, Björnbom P (1995) Transport number determination by the concentration-cell/open-circuit voltage method for oxides with mixed electronic, ionic and protonic conductivity. Solid State Ionics 77:167–174CrossRefGoogle Scholar
  24. 24.
    Nguyen TL, Dokiya M, Wang S et al (2000) The effect of oxygen vacancy on the oxide ion mobility in LaAlO3-based oxides. Solid State Ionics 130(3-4):229–241CrossRefGoogle Scholar
  25. 25.
    Shimura T, Tanaka H, Matsumoto H, Yogo T (2005) Influence of the transition-metal doping on conductivity of a BaCeO3-based protonic conductor. Solid State Ionics 176(39-40):2945–2950CrossRefGoogle Scholar
  26. 26.
    Lee YS, Leonard K, Okuyama Y, Matsumoto H The effect of transition metal doping on the electrical properties of perovskite type proton conductors: (1) alkaline earth cerates. Submitt to Solid State IonicsGoogle Scholar
  27. 27.
    Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys 48(11):4729–4733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hydrogen Energy SystemKyushu UniversityFukuokaJapan
  2. 2.International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan
  3. 3.Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyUSA
  4. 4.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations