Advertisement

Preparation of MgCo2O4/graphite composites as cathode materials for magnesium-ion batteries

  • Siyong Gu
  • Chien-Te HsiehEmail author
  • Mohammad Mahmudul Huq
  • Jo-Pei Hsu
  • Yasser Ashraf Gandomi
  • Jianlin LiEmail author
Original Paper
  • 6 Downloads

Abstract

Magnesium-ion batteries are fabricated with MgCo2O4/graphite composites as the cathode material. MgCo2O4 nanoparticles are prepared using a co-precipitation method. A three-dimensional mixing process is utilized to mechanically decorate MgCo2O4 nanoparticles on graphite particles. The MgCo2O4 spinel crystals of size ranging from 20 to 70 nm on micrometer-sized graphite chunks are analyzed by using X-ray diffraction and scanning electron microscopy. The electrochemical properties of the as-prepared composites are well characterized by cyclic voltammetry, charge and discharge cycling, and electrochemical impedance spectroscopy (EIS). Surprisingly, the MgCo2O4/graphite composite with a relatively low proportion of MgCo2O4, compared with the other as-prepared composites, achieves the highest specific capacity of 180 mAh g−1 at a C rate of 0.05 C. EIS results suggest that the electrical conductivity of the composite material is an increasing function of the graphite proportion. The superior performance of the MgCo2O4/graphite composite could be ascribed to the decoration of nanosized MgCo2O4 particles as well as to the increased conductivity provided by graphite.

Keywords

Mg-ion battery Cathode Spinel structure Composite Magnesium cobaltite Graphite composites 

Notes

Funding information

The authors are very grateful to Ministry of Science and Technology, Taiwan, for the financial support.

References

  1. 1.
    Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 6(18):3578–3591CrossRefGoogle Scholar
  2. 2.
    Saha P, Jampani PH, Datta MK, Okoli CU, Manivannan A, Kumta PN (2014) A convenient approach to Mo6S8 Chevrel phase cathode for rechargeable magnesium battery. J Electrochem Soc 161(4):A593–A598CrossRefGoogle Scholar
  3. 3.
    Liu B, Luo T, Mu G, Wang X, Chen D, Shen G (2013) Rechargeable Mg-ion batteries based on WSe2 nanowire cathodes. ACS Nano 7(9):8051–8058CrossRefGoogle Scholar
  4. 4.
    Okamoto S, Ichitsubo T, Kawaguchi T, Kumagai Y, Oba F, Yagi S, Shimokawa K, Goto N, Doi T, Matsubara E (2015) Intercalation and push-out process with spinel-to-rocksalt transition on Mg insertion into spinel oxides in magnesium batteries. Adv Sci 2:1500072CrossRefGoogle Scholar
  5. 5.
  6. 6.
  7. 7.
    Besenhard JO, Winter M (2002) Advances in battery technology: rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries. ChemPhysChem 3(2):155–159CrossRefGoogle Scholar
  8. 8.
    Padigi P, Goncher G, Evans D, Solanki R (2015) Potassium barium hexacyanoferrate-a potential cathode material for rechargeable calcium ion batteries. J Power Sources 273:460–464CrossRefGoogle Scholar
  9. 9.
    Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612CrossRefGoogle Scholar
  10. 10.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727CrossRefGoogle Scholar
  11. 11.
    Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196(16):7048–7055CrossRefGoogle Scholar
  12. 12.
    Kim HS, Arthur TS, Allred GD, Zajicek J, Newman JG, Rodnyansky AE, Oliver AG, Boggess WC, Muldoon J (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2(1):427CrossRefGoogle Scholar
  13. 13.
    Chang Z, Yang Y, Wang X, Li M, Fu Z, Wu Y, Holze R (2015) Hybrid system for rechargeable magnesium battery with high energy density. Sci Rep 5(1):11931CrossRefGoogle Scholar
  14. 14.
    Cheng Y, Shao Y, Zhang JG, Sprenkle VL, Liu J, Li G (2014) High performance batteries based on hybrid magnesium and lithium chemistry. Chem Commun 50(68):9644–9646CrossRefGoogle Scholar
  15. 15.
    Ichitsubo T, Adachi T, Yagi S, Doi T (2011) Potential positive electrodes for high-voltage magnesium-ion batteries. J Mater Chem 21(32):11764–11772CrossRefGoogle Scholar
  16. 16.
    Guan X, Wang Q, Luo P, Yu Y, Li X, Zhang Y, Chen D (2018) Morphology-tuned synthesis of MgCo2O4 arrays on graphene coated nickel foam for high-rate supercapacitor electrode. Int J Electrochem Sci 13:2272–2285CrossRefGoogle Scholar
  17. 17.
    Shin H, Lee WJ (2016) Multi-shelled MgCo2O4 hollow microspheres as anodes for lithium ion batteries. J Mater Chem A 4(31):12263–12272CrossRefGoogle Scholar
  18. 18.
    Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123CrossRefGoogle Scholar
  19. 19.
    Wang C, Shaw LL (2014) On synthesis of Fe2SiO4/SiO2 and Fe2O3/SiO2 composites through sol-gel and solid-state reactions. J Sol-Gel Sci Technol 72(3):602–614CrossRefGoogle Scholar
  20. 20.
    Stelmachowski P, Maniak G, Kaczmarczyk J, Zasada F, Piskorz W, Kotarba A, Sojka Z (2014) Mg and Al substituted cobalt spinels as catalysts for low temperature deN2O-evidence for octahedral cobalt active sites. Appl Catal B Environ 146:105–111CrossRefGoogle Scholar
  21. 21.
    Pu ZY, Zhou H, Zheng YF, Huang WZ, Li XN (2017) Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: effect of aging time. Appl Surf Sci 410:14–21CrossRefGoogle Scholar
  22. 22.
    Zamudio MA, Bensaid S, Fino D, Russo N (2011) Influence of the MgCo2O4 preparation method on N2O catalytic decomposition. Ind Eng Chem Res 50(5):2622–2627CrossRefGoogle Scholar
  23. 23.
    Truong QD, Devaraju MK, Tran PD, Gambe Y, Nayuki K, Sasaki Y, Honma I (2017) Unravelling the surface structure of MgMn2O4 cathode materials for rechargeable magnesium-ion battery. Chem Mater 29(15):6245–6251CrossRefGoogle Scholar
  24. 24.
    Wang C, Sawicki M, Emani S, Liu C, Shaw LL (2015) Na3MnCO3PO4-a high capacity, multi-electron transfer redox cathode material for sodium ion batteries. Electrochim Acta 161:322–328CrossRefGoogle Scholar
  25. 25.
    Wang C, Sawicki M, Kaduk JA, Liu C, Shaw LL (2015) Roles of processing, structural defects and ionic conductivity in the electrochemical performance of Na3MnCO3PO4 cathode materials. J Electrochem Soc 162(8):A1601–A1609CrossRefGoogle Scholar
  26. 26.
    Huq MM, Hsieh CT, Lin ZW, Yuan CY (2016) One-step electrophoretic fabrication of a graphene and carbon nanotube-based scaffold for manganese-based pseudocapacitors. RSC Adv 6(91):87961–87968CrossRefGoogle Scholar
  27. 27.
    Huq MM, Hsieh CT, Ho CY (2016) Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications. Diam Relat Mater 62:58–64CrossRefGoogle Scholar
  28. 28.
    Wang Y, Guo X, Greenbaum S, Liu J (2001) Solid electrolyte interphase formation on lithium-ion electrodes: a 7Li nuclear magnetic resonance study. Electrochem Solid-State Lett 4(6):A68–A70CrossRefGoogle Scholar
  29. 29.
    Lei J, Li L, Kostecki R, Muller R, McLarnon F (2005) Characterization of SEI layers on LiMn2O4 cathodes with in situ spectroscopic ellipsometry. J Electrochem Soc 152(4):A774–A777CrossRefGoogle Scholar
  30. 30.
    Shi M, Chen Z, Sun J (1999) Determination of chloride diffusivity in concrete by AC impedance spectroscopy. Cem Concr Res 29(7):1111–1115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fujian Provincial Key Laboratory of Functional Materials and Applications, School of Materials Science and EngineeringXiamen University of TechnologyXiamenChina
  2. 2.Department of Chemical Engineering and Materials ScienceYuan Ze UniversityTaoyuanTaiwan
  3. 3.Department of Mechanical, Aerospace and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA
  4. 4.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada
  5. 5.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Energy and Transportation Science DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations