Advertisement

Electrochromic and electrochemical properties of copolymer films based on EDOT and phenylthiophene derivatives

  • Glenda Ribeiro de Barros Silveira Lacerda
  • Claudinei Rezende Calado
  • Hállen Daniel Rezende Calado
Original Paper
  • 24 Downloads

Abstract

The poly(3,4-ethylenedioxythiophene-co-3-phenylthiophene) (P(EDOT-co-3PT)) and poly(3,4-ethylenedioxythiophene-co-3-(4-fluorophenyl)thiophene) (P(EDOT-co-FPT)) were electropolymerized with the application of 1.62 V and 1.95 V, respectively. Unpublished spectroelectrochemical and electrochromic properties of the conjugated copolymers with monomer ratio of 1:1 were investigated. A potential range of − 1.0 to 2.0 V was found to be suitable for the device operation between blue to purple (P(EDOT-co-3PT)) and (P(EDOT-co-FPT)). The maximum transmittance difference (Δ% T) was determined to be 8.24 and 10.37%, and the time differences between oxidation and reduction were 2.14 and 2.94 s. The copolymers showed lower band gap energies than their original homopolymers (~ 1.4 eV).

Keywords

Polythiophenes Copolymer Electrochemistry Spectroelectrochemical Electrochromism 

Notes

Acknowledgments

The authors thank the CEFET-MG for the images provided. Special thanks to Luiza De Lazari Ferreira for valuable remarks and support.

Funding information

This work was supported by CNPq (457586/2014-1), CAPES, and FAPEMIG (TEC; APQ-02715-14).

Supplementary material

10008_2018_4185_MOESM1_ESM.doc (992 kb)
ESM 1 (DOC 992 kb)

References

  1. 1.
    Faez R, Rezende MC, Martin IM, De Paoli MA (2000) Polímeros condutores intrínsecos e seu potencial em blindagem de radiações eletromagnéticas. Polímeros 10:130–137CrossRefGoogle Scholar
  2. 2.
    Naarmann H, Theophilou N (1987) New process for the production of metal-like, stable polyacetylene. Synth Met 22:1–8CrossRefGoogle Scholar
  3. 3.
    Ferreira LDL, Calado HDR (2018) Electrochromic and spectroelectrochemical properties of polythiophene β-substituted with alkyl and alkoxy groups. J Solid State Electrochem 22:1507–1515CrossRefGoogle Scholar
  4. 4.
    Triantou D, Soulis S, Koureli S, De Sio A, Hauff EV (2013) Thiophene-based copolymers synthesized by electropolymerization for application as hole transport layer in organic solar cells. J Appl Polym Sci 127:585–592CrossRefGoogle Scholar
  5. 5.
    Coropceanu V, Cornil J, Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952CrossRefGoogle Scholar
  6. 6.
    Castagnola V, Bayon C, Descamps E, Bergaud C (2014) Morphology and conductivity of PEDOT layers produced by different electrochemical routes. Synth Met 189:7–16CrossRefGoogle Scholar
  7. 7.
    Youm SG, Hwang E, Chavez CA, Li X, Chatterjee S, Lusker KL, Lu L, Strzalka J, Ankner JF, Losovyj Y, Garno JC, Nesterov EE (2016) Polythiophene thin films by surface-initiated polymerization: mechanistic and structural studies. Chem Mater 28:4787–4804CrossRefGoogle Scholar
  8. 8.
    Zanardi C, Terzi F, Seeber R (2013) Polythiophenes and polythiophene based composites in amperometric sensing. Anal Bioanal Chem 405:509–531CrossRefGoogle Scholar
  9. 9.
    Chang BY, Hsu S, Su M, Wei K (2009) Intramolecular donor–acceptor regioregular poly(hexylphenanthrenyl-imidazole thiophene) exhibits enhanced hole mobility for heterojunction solar cell applications. Adv Mater 21:2093–2097CrossRefGoogle Scholar
  10. 10.
    Cruz AGB, Leyva ME, Simão RA (2018) A new low bandgap hybrid polymer film obtained by electropolymerization of 3,4-ethylenedioxythiophene. J Solid State Electrochem 22:1459–1469CrossRefGoogle Scholar
  11. 11.
    Ourahmoun O, Trigaud T, Ratier B, Belkaid MS, Galmiche L, Audebert P (2017) An efficient tetrazine photoluminescent layer used for organic solar cells down shifting. Synth Met 234:106–110CrossRefGoogle Scholar
  12. 12.
    Niklas J, Mardis KL, Banks BP, Grooms GM, Sperlich A, Dyakonov V, Beaupré S, Leclerc M, Xu T, Yu L, Poluektov OG (2013) Highly efficient charge separation and polaron delocalization in polymer-fullerene bulk heterojunctions: a comparative multi-frequency EPR and DFT study. Phys Chem Chem Phys 15:9562–9574CrossRefGoogle Scholar
  13. 13.
    Ameri T, Dennler G, Lungenschmied C, Brabec CJ (2009) Organic tandem solar cells: a review. Energy Environ Sci 2:347–363CrossRefGoogle Scholar
  14. 14.
    Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 98:812–815CrossRefGoogle Scholar
  15. 15.
    Tan J, Zhang Z, He Y, Yue Q, Xie Z, Ji H, Sun Y, Shi W, Ge D (2017) Electrochemical synthesis of conductive, superhydrophobic and adhesive polypyrrole-polydopamine nanowires. Synth Met 234:86–84CrossRefGoogle Scholar
  16. 16.
    Xie Y, Sha X (2018) Electrochemical cycling stability of nickel (II) coordinated polyaniline. Synth Met 237:29–39CrossRefGoogle Scholar
  17. 17.
    Bronstein H, Chen Z, Ashraf RS, Zhang W, Du J, Durrant JR, Tuladhar PS, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, Mcculloch I (2011) Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275CrossRefGoogle Scholar
  18. 18.
    Reddy MR, Kim H, Kim C, Seo S (2018) 2-Thiopene[1]benzothieno[3,2-b]benzothiophene derivatives as solutionprocessable organic semiconductors for organic thin-film transistors. Synth Met 235:153–159CrossRefGoogle Scholar
  19. 19.
    Schwabegger G, Ullah M, Vladu MI, Baumgartner M, Kanbur Y, Ahmed R, Stadler P, Bauer S, Sariciftci NS, Sitter H (2011) High mobility, low voltage operating C60 based n-type organic field effect transistors. Synth Met 161:2058–2062CrossRefGoogle Scholar
  20. 20.
    Thomas IIISW, Joly GD, Swager TM (2007) Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev 107:1339–1386CrossRefGoogle Scholar
  21. 21.
    Fusco G, Göbel G, Zanoni R, Kornejew E, Favero G, Mazzei F, Lisdat F (2017) Polymer-supported electron transfer of PQQ-dependent glucose dehydrogenase at carbon nanotubes modified by electropolymerized polythiophene copolymers. Electrochim Acta 248:64–74CrossRefGoogle Scholar
  22. 22.
    Sharma A, Kumar A, Khan R (2018) A highly sensitive amperometric immunosensor probe based on gold nanoparticle functionalized poly (3, 4-ethylenedioxythiophene) doped with graphene oxide for efficient detection of aflatoxin B1. Synth Met 235:136–144CrossRefGoogle Scholar
  23. 23.
    Sajid H, Mahmood T, Ayub K (2018) High sensitivity of polypyrrole sensor for uric acid over urea, acetamide and sulfonamide: a density functional theory study. Synth Met 235:49–60CrossRefGoogle Scholar
  24. 24.
    Ikeda T, Higuchi M (2011) Electrochromic properties of polythiophene polyrotaxane film. Langmuir 27:4184–4189CrossRefGoogle Scholar
  25. 25.
    Hee Y, Hong J, Kyu T, Yun H, Kim K, Eon C, Kim Y, Kwon S (2017) Dyes and pigments low-band gap copolymers based on diketopyrrolopyrrole and dibenzosilole and their application in organic photovoltaics. Dyes Pigments 146:73–81CrossRefGoogle Scholar
  26. 26.
    Renzi W, Cordeiro NJA, Laureto E, Urbano A, Silva PRC, Duarte JL (2018) White electroluminescence based on PFO:CdSe(ZnS):P3OT hybrid blends. Synth Met 237:10–15CrossRefGoogle Scholar
  27. 27.
    Quintanilha RC, Rocha I, Vichessi RB, Lucht E, Naidek K, Winnischofer H, Vidotti M (2014) Eletrocromismo: Fundamentos e a aplicação de nanomateriais no desenvolvimento de eletrodos de alto desempenho. Quim Nova 37:677–688CrossRefGoogle Scholar
  28. 28.
    Mortimer RJ (1997) Electrochromic materials. Chem Soc Rev 26:147–156CrossRefGoogle Scholar
  29. 29.
    Ustamehmeto B, Osken I, Cinar ME, Sezer E, Karaca E, Ozturk T (2017) Synthesis and characterization of dithienothiophene, bithiazole and thiophene containing polymer. Electrochim Acta 227:435–446CrossRefGoogle Scholar
  30. 30.
    Long J, Tang Q, Lv Z, Zhu C, Fu X, Gong C (2017) Synthesis and characterization of dual-colored electrochromic derivatives. Electrochim Acta 248:1–10CrossRefGoogle Scholar
  31. 31.
    Wei Z, Xu J, Hou J, Zhou W, Pu S (2006) Electrochemical and spectroscopic characteristics of copolymers electrochemically synthesized from 3-(4-fluorophenyl)thiophene and 3,4-ethylenedioxythiophene. J Mater Sci 41:3923–3930CrossRefGoogle Scholar
  32. 32.
    Arslan A, Turkarslan O, Tanyeli C, Akhmedov IM, Toppare L (2007) Electrochromic properties of a soluble conducting polymer: Poly(1-(4-fluorophenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole. Mater Chem Phys 104:410–416CrossRefGoogle Scholar
  33. 33.
    Zhang Z, Shi G (2004) Electrochemical polymerization of 3-phenylthiophene. J Electroanal Chem 569:197–202CrossRefGoogle Scholar
  34. 34.
    Lu J, Song H, Li S, Wang L, Han L, Ling H, Lu X (2015) A poly(3,4ethylenedioxythiophene): poly(styrene sulfonic acid)/ titanium oxide nanocomposite film synthesized by sol-gel assisted electropolymerization for electrochromic application. Thin Solid Films 584:353–358CrossRefGoogle Scholar
  35. 35.
    Astratine L, Magner E, Cassidy J, Betts A (2014) Electrodeposition and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM BF4 using a microcell configuration. Electrochim Acta 115:440–448CrossRefGoogle Scholar
  36. 36.
    Armarego WLF, Perrin DD (1996) Purification of laboratory chemicals. Butterworth-Heinemann, OxfordGoogle Scholar
  37. 37.
    Ferreira VF (1992) Alguns aspectos sobre a secagem dos principais solventes orgânicos. Quim Nova 15:348–350Google Scholar
  38. 38.
    Williams DBG, Lawton M (2010) Drying of organic solvents: quantitative evaluation of the efficiency of several desiccants. J Organomet Chem 75:8351–8354CrossRefGoogle Scholar
  39. 39.
    Bakouri OE, Fernández M, Brun S, Quintana AP, Roglans A (2013) A simple catalytic system based on PdCl2 (CH3CN)2 in water for cross-coupling reactions using diazonium salts. Tetrahedron 69:9761–9765CrossRefGoogle Scholar
  40. 40.
    Shen L, Xu J, Wei Z, Xiao Q, Pu S (2005) Electrosyntheses of freestanding poly (3-(4-fluorophenyl)thiophene) films in boron trifluoride diethyl etherate. Eur Polym J 41:1738–1746CrossRefGoogle Scholar
  41. 41.
    Fichou D (2007) Handbook of oligo- and polythiophenes. Wiley, New YorkGoogle Scholar
  42. 42.
    Bu HB, Götz G, Reinold E, Vogt A, Azumi R, Segura JL, Bäuerle P (2012) “Click”-modification of a functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) soluble in organic solvents. Chem Commun 48:2677–2679CrossRefGoogle Scholar
  43. 43.
    Kvarnström C, Neugebauer H, Ivaska A, Sariciftci NS (2000) Vibrational signatures of electrochemical p- and n-doping of poly(3,4-ethylenedioxythiophene) films: an in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. J Mol Struct 521:271–277CrossRefGoogle Scholar
  44. 44.
    Lee JS, Choi YJ, Park HH, Pyun JC (2011) Electrochromic properties of poly(3,4-ethylenedioxythiophene) nanocomposite film containing SiO2 nanoparticles. J Appl Polym Sci 122:3080–3085CrossRefGoogle Scholar
  45. 45.
    Ueda M, Miyajii Y, Ito T (1991) Synthesis of poly(3-phenyl-2,5-thiophene) by nickel-catalyzed coupling polymerization of 3-phenyl-2,5-dichlorothiophene. Macromolecules 24:2694–2697CrossRefGoogle Scholar
  46. 46.
    Barsch U, Beck F (1996) Anodic overoxidation of polythiophenes wet acetonitrile electrolytes. Electrochim Acta 41:1761–1771CrossRefGoogle Scholar
  47. 47.
    Tehrani P, Kanciurzewska A, Crispin X, Robinson ND, Fahlman M, Berggren M (2007) The effect of pH on the electrochemical over-oxidation in PEDOT:PSS films. Solid State Ionics 177:3521–3527CrossRefGoogle Scholar
  48. 48.
    Yasuda T, Namekawa K, Iijima T, Yamamoto T (2007) New luminescent 1,2,4-triazole/thiophene alternating copolymers: synthesis, characterization, and optical properties. Polymer 48:4375–4384CrossRefGoogle Scholar
  49. 49.
    Castagnola V, Descamps E, Lecestre A, Dahan L, Remaud J, Nowak LG, Bergaud C (2015) Parylene-based flexible neural probes with PEDOT coated surface for brain stimulation and recording. Biosens Bioelectron 67:450–457CrossRefGoogle Scholar
  50. 50.
    Armstrong NR, Carter C, Donley C, Simmonds A, Lee P, Brumbach M, Kippelen B, Domercq B, Yoo S (2003) Interface modification of ITO thin films: organic photovoltaic cells. Thin Solid Films 445:342–352CrossRefGoogle Scholar
  51. 51.
    Ouyang M, Wang G, Zhang Y, Hua C, Zhang C (2011) Multicolored electrochromic copolymer based on 1,4-di (thiophen-3-yl) benzene and 3,4-ethylenedioxythiophene. J Electroanal Chem 653:21–26CrossRefGoogle Scholar
  52. 52.
    Naudin E, Ho HA, Branchaud S, Breau L, Bélanger D (2002) Electrochemical polymerization and characterization of poly(3-(4-fluorophenyl)thiophene) in pure ionic liquids. J Phys Chem B 106:10585–10593CrossRefGoogle Scholar
  53. 53.
    Andrade JR (2015) Desenvolvimento de dispositivos eletrocrômicos, Universidade de São Paulo (USP)Google Scholar
  54. 54.
    Agostinho SML, Villamil RFV, Agostinho Neto A, Aranha H (2004) O eletrólito suporte e suas múltiplas funções em processos de eletrodo. Quim Nova 27:813–817CrossRefGoogle Scholar
  55. 55.
    Santiago ANA (2015) Aplicação do processo oxidadtivo avançado eletroquímico (POAE) mediante uso de reator filtro prensa do tipo eletrólito polimérico sólido no tratamento de efluentes aquosos simulados contendo fármacos de relevância ambiental. Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)Google Scholar
  56. 56.
    Calado HDR, Matencio T, Donnici CL, Cury LA, Rieumont J, Pernaut JM (2008) Synthesis and electrochemical and optical characterization of poly(3-ctadecylthiophene). Synth Met 158:1037–1042CrossRefGoogle Scholar
  57. 57.
    Marchesin MS, Cessi R, Bressanin JM, Bartoli JR, Abe IY, Carreño MNP, Pereyra I (2013) Desenvolvimento de nanocompósitos de PMMA/NTCPM para aplicações em dispositivos optoeletrônicos e células solares fotovoltaicas. Rev Bras Energ Sol IV:85–92Google Scholar
  58. 58.
    Eftekhari A (2010) Nanostructured conductive polymers. Wiley, New YorkCrossRefGoogle Scholar
  59. 59.
    Cando AP, Hernandez MR, Uribe BF (2013) Electrodepósitos de Poli-3,4-etilenodioxitiofeno sobre electrodos transparantes de Óxido de Indio y Estaño. Control del espesor y Morfologia. Química Cent 3:43–51Google Scholar
  60. 60.
    Zhao Q, Jamal R, Zhang L, Wang M, Abdiryim T (2014) The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9:1–9CrossRefGoogle Scholar
  61. 61.
    Alhalasah W (2007) Electrochemical materials science: calculation vs. experiment as predictive tools in tailoring intrinsically conducting polythiophenes. Microchim Acta 156:133–139CrossRefGoogle Scholar
  62. 62.
    You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1–10CrossRefGoogle Scholar
  63. 63.
    Ameri T, Li N, Brabec CJ (2013) Highly efficient organic tandem solar cells: a follow up review. Energy Environ Sci 6:2390–2413CrossRefGoogle Scholar
  64. 64.
    Khlyabich PP, Burkhart B, Rudenko AE, Thompson BC (2013) Optimization and simplification of polymer e fullerene solar cells through polymer and active layer design. Polymer 54:5267–5298CrossRefGoogle Scholar
  65. 65.
    Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28:9423–9429CrossRefGoogle Scholar
  66. 66.
    Izuhara D, Swager TM (2011) Bispyridinium-phenylene-based copolymers: low band gap n-type alternating copolymers. J Mater Chem 21:3579–3584CrossRefGoogle Scholar
  67. 67.
    Soylemez S, Hacioglu SO, Uzun D, Toppare L (2015) A low band gap benzimidazole derivative and its copolymer with 3,4-ethylenedioxythiophene for electrochemical studies. J Electrochem Soc 162:6–14CrossRefGoogle Scholar
  68. 68.
    Krishnamoorthy K, Ambade AV, Kanungo M, Contractor AQ, Kumar A (2001) Rational design of an electrochromic polymer with high contrast in the visible region: dibenzyl substituted poly(3,4-propylenedioxythiophene). J Mater Chem 11:2909–2911Google Scholar
  69. 69.
    Guedes AFS (2010) Desenvolvimento de dispositivos orgânicos eletrocrômicos de transmissão. Pontifícia Universidade Católica do Rio Grande do Sul (PUC-RS)Google Scholar
  70. 70.
    Oliveira RS, Semaan FS, Ponzio AE (2015) Janelas Eletrocrômicas: Uma Nova Era em Eficiência Energética. Rev Virtual Química 7:336–356Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Glenda Ribeiro de Barros Silveira Lacerda
    • 1
  • Claudinei Rezende Calado
    • 2
  • Hállen Daniel Rezende Calado
    • 1
  1. 1.Departamento de Química, ICExUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG)Belo HorizonteBrazil

Personalised recommendations