Journal of Solid State Electrochemistry

, Volume 23, Issue 4, pp 1109–1119 | Cite as

The effect of alkyl chain of the imidazolium ring on the poly(o-methoxyaniline)/ionic liquid supercapacitor performance

  • L. G. da Trindade
  • W. A. Christinelli
  • L. Zanchet
  • D. Coelho
  • A. B. Trench
  • Emilse M. A. Martini
  • Daniel S. Correa
  • Luiz H. C. Mattoso
  • E. C. PereiraEmail author
Original Paper


New materials can be developed using a known compound with enhanced properties modifying and controlling its microstructure, morphology, and density of defects. In this work, a new material was produced by the addition of ionic liquid (IL) to the poly(o-methoxyaniline) (POMA) conductive polymer, in the form of esmeraldine salt. The polymer impregnated with IL was tested as an electrode for use in supercapacitors. The results show that the charge storage properties of the materials are dependent on the length of the alquil substituent of imidazolium ring of ionic liquid cation. The best results, obtained by the addition of 1-butyl-3-methylimidazolium triflate IL to the polymer, improved electrical charge storage and electrochemical stability, making the material a promising electrode for supercapacitor devices. This compound has specific capacitance of 205 F/g, five times larger than pure POMA and was stable for 3000 cycles of charge/discharge experiments carried out at 1.0 A/g.

Graphical Abstract


Conducting polymers Poly(o-methoxyaniline) Supercapacitors Ionic liquids 



Financial support of this research was provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant Nos. 2011/10897-2, 2016/05363-2, 2013/07296-2), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (402287/2013-4), Sistema de Laboratórios em Nanotecnologias/Ministério da Ciência, Tecnologia e Inovação (SISNANO/MCTI), Financiadora de Estudos e Projetos (FINEP), and Embrapa AgroNano research network.

Supplementary material

10008_2018_4183_MOESM1_ESM.docx (2.1 mb)
ESM 1 (DOCX 2145 kb)


  1. 1.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  2. 2.
    Liu W, Song M-S, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29(1):1603436CrossRefGoogle Scholar
  3. 3.
    Shi Y, Peng L, Ding Y, Zhao Y, Yu G (2015) Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 44(19):6684–6696CrossRefPubMedGoogle Scholar
  4. 4.
    Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Conducting polymers for Pseudocapacitive energy storage. Chem Mater 28(17):5989–5998CrossRefGoogle Scholar
  5. 5.
    Liewa C-W, Arifin KH, Kawamura J, Iwai Y, Ramesha S, Arof AK (2017) Effect of halide anions in ionic liquid added poly(vinyl alcohol)-based ion conductors for electrical double layer capacitors. J Non-Cryst Solids 458:97–106CrossRefGoogle Scholar
  6. 6.
    Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107CrossRefGoogle Scholar
  7. 7.
    Inzelt G (2011) Rise and rise of conducting polymers. J Solid State Electrochem 15(7-8):1711–1718CrossRefGoogle Scholar
  8. 8.
    Christinelli WA, Gonçalves R, Pereira EC (2016) Optimization of electrochemical capacitor stability of poly(o-methoxyaniline)-poly(3-thiophene acetic acid) self-assembled films. Electrochim Acta 196:741–748CrossRefGoogle Scholar
  9. 9.
    Christinelli WA, Gonçalves R, Pereira EC (2016) A new generation of electrochemical supercapacitors based on layer-by-layer polymer films. J Power Sources 303:73–80CrossRefGoogle Scholar
  10. 10.
    Gonçalves R, Christinelli WA, Trench AB, Cuesta A, Pereira EC (2017) Properties improvement of poly(o-methoxyaniline) based supercapacitors: experimental and theoretical behaviour study of self-doping effect. Electrochim Acta 228:57–65CrossRefGoogle Scholar
  11. 11.
    Yang X, Wang G, Wang R, Li X (2010) A novel layered manganese oxide/poly(aniline-co-o-anisidine) nanocomposite and its application for electrochemical supercapacitor. Electrochim Acta 55(19):5414–5419CrossRefGoogle Scholar
  12. 12.
    Mohammadi A, Peighambardoust SJ, Entezami AA, Arsalani N (2017) High performance of covalently grafted poly(o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J Mater Sci Mater Electron 28:5776–5787CrossRefGoogle Scholar
  13. 13.
    Basnayaka PA, Ram MK, Stefanakos L, Kumar A (2013) High performance graphene-poly (o-anisidine) nanocomposite for supercapacitor applications. Mater Chem Phys 141(1):263–271CrossRefGoogle Scholar
  14. 14.
    Soares BG (2018) Ionic liquid: a smart approach for developing conducting polymer composites: a review. J Mol Liq 262:8–18CrossRefGoogle Scholar
  15. 15.
    Watanabe M, Thomas ML, Zhang S, Ueno K, Yasuda T, Dokko K (2017) Application of ionic liquids to energy storage and conversion materials and devices. Chem Rev 117(10):7190–7239CrossRefPubMedGoogle Scholar
  16. 16.
    Pandey GP, Hashmi SA (2013) Ionic liquid 1-ethyl-3-methylimidazolium tetracyanoborate-based gel polymer electrolyte for electrochemical capacitors. J Mater Chem A 1(10):3372–3378CrossRefGoogle Scholar
  17. 17.
    Liu H, Yu H (2018) Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol.
  18. 18.
    Marsousi S, Karimi-Sabet J, Moosavian MA, Amini Y (2019) Liquid-liquid extraction of calcium using ionic liquids in spiral microfluidics. Chem Eng J 356:492–505CrossRefGoogle Scholar
  19. 19.
    Deyab MA (2018) Ionic liquid as an electrolyte additive for high performance lead-acid batteries. J Power Sources 390:176–180CrossRefGoogle Scholar
  20. 20.
    Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396CrossRefGoogle Scholar
  21. 21.
    Miao L, Zhu D, Liu M, Duan H, Wang Z, Lv Y, Xiong W, Zhu Q, Li L, Chai X, Gan L (2018) Cooking carbon with protic salt: nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chem Eng J 347:233–242CrossRefGoogle Scholar
  22. 22.
    Miao L, Zhu D, Liu M, Duan H, Wang Z, Lv Y, Xiong W, Zhu Q, Li L, Chai X, Gan L (2018) N, S co-doped hierarchical porous carbon rods derived from protic salt: facile synthesis for high energy density supercapacitors. Electrochim Acta 274:378–388CrossRefGoogle Scholar
  23. 23.
    Galiński M, Lewandowski A, Stępniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580CrossRefGoogle Scholar
  24. 24.
    Zhu Q, Song Y, Zhu X, Wang X (2007) Ionic liquid-based electrolytes for capacitor applications. J Electroanal Chem 601(1-2):229–236CrossRefGoogle Scholar
  25. 25.
    Ketabi S, Decker B, Lian K (2016) Proton conducting ionic liquid electrolytes for liquid and solid-state electrochemical pseudocapacitores. Solid State Ionics 298:73–79CrossRefGoogle Scholar
  26. 26.
    Kim J, Kim S (2014) Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties. Appl Surf Sci 295:31–37CrossRefGoogle Scholar
  27. 27.
    Mattoso LHC, MacDiarmid AG, Epstein AJ (1994) Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline). Synth Met 68(1):1–11CrossRefGoogle Scholar
  28. 28.
    Dupont J, Consorti CS, Suarez PAZ, de Souza RF (2002) Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org Synth 79:236–243CrossRefGoogle Scholar
  29. 29.
    Suarez PAZ, Dullius JEL, Einloft S, de Souza RF, Dupont J (1996) The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes. Polyhedron 15(7):1217–1219CrossRefGoogle Scholar
  30. 30.
    Pohlmann S, Olyschläger T, Goodrich P, Vicente JA, Jacquemin J, Balducci A (2015) Azepanium-based ionic liquids as green electrolytes for high voltage supercapacitors. J Power Sources 273:931–936CrossRefGoogle Scholar
  31. 31.
    Motheo AJ, Pantoja MF, Venancio EC (2004) Effect of monomer ratio in the electrochemical synthesis of poly(aniline-co-o-methoxyaniline). Solid State Ionics 171(1-2):91–98CrossRefGoogle Scholar
  32. 32.
    Zhu D, Jiang J, Sun D, Qian X, Wang Y, Li L, Wang Z, Chai X, Gan L, Liu M (2018) A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J Mater Chem A 6(26):12334–12343CrossRefGoogle Scholar
  33. 33.
    Sui J, Zhang L, Peng H (2013) Label-free DNA sensor construction using self-assembled poly(o-methoxyaniline) hollow nanospheres. Eur Polym J 49(1):139–146CrossRefGoogle Scholar
  34. 34.
    Rall JD, Seehra MS (2012) The nature of the magnetism in quasi-2D layered α-Ni(OH)2. J Phys Condens Matter 24:8CrossRefGoogle Scholar
  35. 35.
    Mamma K, Siraj K, Meka N (2013) Effect on poly(C6H5NH2) emeraldine salt by FeCl3 and KMnO4 as secondary dopants. Am J Polym Sci Eng 1:1–13Google Scholar
  36. 36.
    Arof AK, Kufian MZ, Syukur MF, Aziz MF, Abdelrahman AE, Majid SR (2012) Electrical double layer capacitor using poly(methyl methacrylate)eC4BO8Li gel polymer electrolyte and carbonaceous material from shells of Mata kucing (Dimocarpus longan) fruit. Electrochim Acta 74:39–45CrossRefGoogle Scholar
  37. 37.
    Pandey GP, Kumar Y, Hashmi SA (2011) Ionic liquid incorporated PEO based polymer electrolyte for electrical double layer capacitors: a comparative study with lithium and magnesium systems. Solid State Ionics 190(1):93–98CrossRefGoogle Scholar
  38. 38.
    Kumbhar VS, Lokhande AC, Gaikwad NS, Lokhande CD (2015) Porous network of samarium sulfide thin films for supercapacitive application. Mater Sci Semicond Process 33:136–139CrossRefGoogle Scholar
  39. 39.
    Christinelli WA, da Trindade LG, Trench AB, Quintans CS, Paranhos CM, Pereira EC (2017) Energy 141:1829–1835CrossRefGoogle Scholar
  40. 40.
    Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects properties and applications. Synth Met 177:1–47CrossRefGoogle Scholar
  41. 41.
    Hunter TB, Tyler PS, Smyrl WH, White HS (1987) Impedance analysis of poly(vinyferrocene) films: the dependence of diffusional charge transport and exchange current density on polymer oxidation state. J Electrochem Soc 134:2198–2204CrossRefGoogle Scholar
  42. 42.
    Ren X, Pickup PG (1997) An impedance study of electron transport and electron transfer in composite polypyrrole + polystyrenesulphonate films. J Electroanal Chem 420(1-2):251–257CrossRefGoogle Scholar
  43. 43.
    Bandeira MCE, Franco CV, Martini EMA (1999) Electrochemical impedance spectroscopy of poly{pyrrole-trans-[RuCl2(pmp)4]} copolymer films deposited on platinum electrodes. J Solid State Electrochem 3(4):210–214CrossRefGoogle Scholar
  44. 44.
    Amirudin A, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1–28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. G. da Trindade
    • 1
    • 2
  • W. A. Christinelli
    • 3
  • L. Zanchet
    • 2
  • D. Coelho
    • 1
  • A. B. Trench
    • 1
  • Emilse M. A. Martini
    • 2
  • Daniel S. Correa
    • 3
  • Luiz H. C. Mattoso
    • 3
  • E. C. Pereira
    • 1
    Email author
  1. 1.Chemistry DepartmentFederal University of São CarlosSão CarlosBrazil
  2. 2.Institute of ChemistryUFRGSPorto AlegreBrazil
  3. 3.Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa InstrumentationSão CarlosBrazil

Personalised recommendations