Advertisement

Crossing VIMP and EIS for studying heterogeneous sets of copper/bronze coins

  • Francesca Di TuroEmail author
  • Rafael Parra
  • Joan Piquero-Cilla
  • Gabriele Favero
  • Antonio Doménech-CarbóEmail author
Original Paper
  • 23 Downloads

Abstract

Electrochemical impedance spectroscopy (EIS) and voltammetry of immobilized particles (VIMP) measurements using air-saturated mineral water and 0.10 M NaClO4 aqueous solution as electrolytes were applied to eurocent coins and a set of copper/bronze coins from the late nineteenth century exhibiting significant heterogeneity in their degree and type of corrosion. The obtained data presented satisfactory repeatability being fitted to relatively simple equivalent circuits which were dependent on the electrolyte and bias potential, the more satisfactory conditions being obtained using the reduction of dissolved oxygen as a redox probe. Consistent data were obtained using VIMP and EIS characterizing different corrosion patterns, and establishing the possibility of discriminating different monetary emissions in favorable cases of high level of corrosion.

Keywords

Electrochemistry Archaeology Electrochemical impedance spectroscopy Copper Bronze 

Notes

Funding information

Project CTQ2017-85317-C2-1-P, which is supported with Ministerio de Economía, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) funds, and Agencia Estatal de Investigación (AEI) and PhD grants of the Department of Earth Sciences, Sapienza University of Rome, are gratefully acknowledged.

Supplementary material

10008_2018_4182_MOESM1_ESM.doc (298 kb)
ESM 1 (DOC 297 kb)

References

  1. 1.
    Scott DA (1991) Metallography and microstructure of ancient and historic metals. Getty Conservation Institute in association with Archetype Books, Marina del Rey, p 155Google Scholar
  2. 2.
    Ingo GM, Balbi S, De Caro T et al (2006) Microchemical investigation of Greek and Roman silver and gold plated coins: coating techniques and corrosion mechanisms. Appl Phys A Mater Sci Process 83(4):623–629CrossRefGoogle Scholar
  3. 3.
    FitzGerald KP, Nairn J, Skennerton G, Atrens A (2006) Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corros Sci 48(9):2480–2509CrossRefGoogle Scholar
  4. 4.
    Robbiola L, Blengino JM, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corros Sci 40(12):2083–2111CrossRefGoogle Scholar
  5. 5.
    Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P, Robbiola L (2007) Composition and electrochemical properties of natural patinas of outdoor bronze monuments. Electrochim Acta 52(27):7760–7769CrossRefGoogle Scholar
  6. 6.
    Robbiola L, Hurtel L (1997) Standard nature of the passive layers of buried archaeological bronze - the example of two Roman half-length portraits. In: METAL 95: international conference on metals conservation. James and James science Publisher, Semuren-Auxois, pp 109–117Google Scholar
  7. 7.
    Serghini-Idrissi M, Bernard MC, Harrif FZ, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V, Ziani M (2005) Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim Acta 50(24):4699–4709CrossRefGoogle Scholar
  8. 8.
    Di Turo F, Montoya N, Piquero-Cilla J et al (2017) Archaeometric analysis of Roman bronze coins from the Magna Mater temple using solid-state voltammetry and electrochemical impedance spectroscopy. Anal Chim Acta 955:36–47CrossRefGoogle Scholar
  9. 9.
    Di Turo F, De Vito C, Coletti F et al (2017) A multi-analytical approach for the validation of a jellified electrolyte: application to the study of ancient bronze patina. Microchem J 134:154–163CrossRefGoogle Scholar
  10. 10.
    Aucouturier M, Darque-Ceretti E (2007) The surface of cultural heritage artefacts: physicochemical investigations for their knowledge and their conservation. Chem Soc Rev 36(10):1605CrossRefGoogle Scholar
  11. 11.
    Ingo GM, Riccucci C, Faraldi F, Pascucci M, Messina E, Fierro G, di Carlo G (2017) Roman sophisticated surface modification methods to manufacture silver counterfeited coins. Appl Surf Sci 421:109–119CrossRefGoogle Scholar
  12. 12.
    Griesser M, Kockelmann W, Hradil K, Traum R (2016) New insights into the manufacturing technique and corrosion of high leaded antique bronze coins. Microchem J 126:181–193CrossRefGoogle Scholar
  13. 13.
    Ingo GM, Balbi S, De Caro T et al (2006) Combined use of SEM-EDS, OM and XRD for the characterization of corrosion products grown on silver roman coins. Appl Phys A Mater Sci Process 83(4):493–497CrossRefGoogle Scholar
  14. 14.
    Bernard MC, Joiret S (2009) Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochim Acta 54(22):5199–5205CrossRefGoogle Scholar
  15. 15.
    Matthiesen H, Hilbert LR, Gregory D, Sørensen B (2004) Corrosion of archaeological iron artefacts compared to modern iron at the waterlogged site Nydam, Denmark. Eurocorr 2004:1–12Google Scholar
  16. 16.
    Doménech-Carbó A, Doménech-Carbó MT, Montagna E, Álvarez-Romero C, Lee Y (2017) Electrochemical discrimination of mints: the last Chinese emperors Kuang Hsü and Hsüan T’ung monetary unification. Talanta 169:50–56CrossRefGoogle Scholar
  17. 17.
    Doménech-Carbó A, Doménech-Carbó MT, Capelo S, Pasíes T, Martínez-Lázaro I (2014) Dating archaeological copper/bronze artifacts by using the voltammetry of microparticles. Angew Chem Int Ed 53(35):9262–9266CrossRefGoogle Scholar
  18. 18.
    Doménech-Carbo A (2017) Electrochemical dating: a review. J Solid State Electrochem 21(7):1987–1998CrossRefGoogle Scholar
  19. 19.
    Doménech-Carbó A, Doménech-Carbó M, Martínez-Lázaro I (2008) Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchim Acta 162(3-4):351–359CrossRefGoogle Scholar
  20. 20.
    Di Turo F, Montoya N, Piquero-Cilla J et al (2018) Dating archaeological strata in the magna mater temple using solid-state voltammetric analysis of leaded bronze coins. Electroanalysis 30(2):361–370CrossRefGoogle Scholar
  21. 21.
    Ramírez Barat B, Cano E (2018) In situ electrochemical impedance spectroscopy measurements and their interpretation for the diagnostic of metallic cultural heritage: a review. ChemElectroChem 5:2698–2716Google Scholar
  22. 22.
    Sharer Sahir Z, Sykes JM (2014) Effect of temperature on the impedance response of coated metals. Prog Org Coat 77(12):2039–2044CrossRefGoogle Scholar
  23. 23.
    Amirudin A, DT AA, Thierry D (1995) Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Prog Org Coat 26(1):1–28CrossRefGoogle Scholar
  24. 24.
    Láng GG, Ujvári M, Bazsó F, Vesztergom S, Ujhelyi F (2012) In situ monitoring of the electrochemical degradation of polymer films on metals using the bending beam method and impedance spectroscopy. Electrochim Acta 73:59–69CrossRefGoogle Scholar
  25. 25.
    Fatkullin AR, Parfenov EV, Yerokhin A, Lazarev DM, Matthews A (2015) Effect of positive and negative pulse voltages on surface properties and equivalent circuit of the plasma electrolytic oxidation process. Surf Coat Technol 284:427–437CrossRefGoogle Scholar
  26. 26.
    Bonora PL, Deflorian F, Fedrizzi L (1996) Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim Acta 41(7-8):1073–1082CrossRefGoogle Scholar
  27. 27.
    Mora N, Cano E, Polo JL, Puente JM, Bastidas JM (2004) Corrosion protection properties of cerium layers formed on tinplate. Corros Sci 46(3):563–578CrossRefGoogle Scholar
  28. 28.
    Doménech-Carbó A, Doménech-Carbó MT, Peiró-Ronda MA, Martínez-Lázaro I, Barrio-Martín J (2012) Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. J Solid State Electrochem 16(7):2349–2356CrossRefGoogle Scholar
  29. 29.
    Doménech-Carbò A, Capelo S, Piquero J et al (2016) Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating. Mater Corros 67(2):120–129CrossRefGoogle Scholar
  30. 30.
    Doménech-Carbò A, Domènech-Carbò MT, Martìnez-Làzaro I (2010) Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Anal Chim Acta 680(1-2):1–9CrossRefGoogle Scholar
  31. 31.
    Doménech-Carbó A, Lastras M, Rodríguez F, Cano E, Piquero-Cilla J, Osete-Cortina L (2014) Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. J Solid State Electrochem 18(2):399–409CrossRefGoogle Scholar
  32. 32.
    Dermaj A, Hajjaji N, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V (2007) Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative. Electrochim Acta 52(14):4654–4662CrossRefGoogle Scholar
  33. 33.
    Hassairi H, Bousselmi L, Khosrof S (2013) Evaluation of the inhibitive effect of benzotriazole on archeological bronze in acidic medium. Appl Phys A Mater Sci Process 113(4):923–931CrossRefGoogle Scholar
  34. 34.
    Adriaens A, Dowsett M (2008) Time resolved spectroelectrochemistry studies for protection of heritage metals. Surf Eng 24(2):84–89CrossRefGoogle Scholar
  35. 35.
    Di Turo F, Matricardi P, Di Meo C, Mazzei F, Favero G, Zane D (2018) PVA hydrogel as polymer electrolyte for electrochemical impedance analysis on archaeological metals. J Cult Herit.  https://doi.org/10.1016/j.culher.2018.09.017
  36. 36.
    Di Fazio M, Di Turo F, Medeghini L et al (2019) New insights on medieval Provisini silver coins by a combination of non-destructive and micro-invasive techniques. Microchem J 144:309–318.  https://doi.org/10.1016/j.microc.2018.09.016 CrossRefGoogle Scholar
  37. 37.
    Sluyters-Rehbach M, Sluyters JH (1979) On the meaning of the impedance concept in the case of an object that varies with time and in the case of a swept F frequency. J Electroanal Chem 102(3):415–419CrossRefGoogle Scholar
  38. 38.
    Popkirov GS, Schindler RN (1993) Validation of experimental data in electrochemical impedance spectroscopy. Electrochim Acta 38(7):861–867CrossRefGoogle Scholar
  39. 39.
    Macdonald DD, Sikora E, Engelhardt G (1998) Characterizing electrochemical systems in the frequency domain. Electrochim Acta 43(1-2):87–107CrossRefGoogle Scholar
  40. 40.
    Bastidas JM, Polo JL, Torres CL, Cano E (2001) Study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corros Sci 43(2):269–281CrossRefGoogle Scholar
  41. 41.
    Degrigny C, Guibert G, Ramseyer S, Rapp G, Tarchini A (2010) Use of E corr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects: the SPAMT test project. J Solid State Electrochem 14(3):425–435CrossRefGoogle Scholar
  42. 42.
    Vázquez-Huerta G, Ramos-Sánchez G, Rodríguez-Castellanos A, Meza-Calderón D, Antaño-López R, Solorza-Feria O (2010) Electrochemical analysis of the kinetics and mechanism of the oxygen reduction reaction on Au nanoparticles. J Electroanal Chem 645(1):35–40CrossRefGoogle Scholar
  43. 43.
    Çirmi D, Aydin R, Köleli F (2015) The electrochemical reduction of nitrate ion on polypyrrole coated copper electrode. J Electroanal Chem 736:101–106CrossRefGoogle Scholar
  44. 44.
    Scholz F, Meyer B (1996) Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal Chem 20:1–82Google Scholar
  45. 45.
    Scholz F, Schröder U, Gulaboski R, Doménech-Carbó A (2015) Electrochemistry of immobilized particles and droplets, 2nd edn. Springer International Publishing, Berlin-HeidelbergGoogle Scholar
  46. 46.
    Doménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC technical report)*. Pure Appl Chem 85:609–631CrossRefGoogle Scholar
  47. 47.
    Doménech-Carbó A, Doménech-Carbó MTM, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration, I. Springer Berlin Heidelberg, BerlinCrossRefGoogle Scholar
  48. 48.
    Doménech-Carbó A, Doménech-Carbó MT, Álvarez-Romero C, Montoya N, Pasíes-Oviedo T, Buendía M (2017) Electrochemical characterization of coinage techniques the 17thCentury: the maravedís case. Electroanalysis 29(9):2008–2018CrossRefGoogle Scholar
  49. 49.
    Redondo-Marugán J, Piquero-Cilla J, Doménech-Carbó MT, Ramírez-Barat B, Sekhaneh WA, Capelo S, Doménech-Carbó A (2017) Characterizing archaeological bronze corrosion products intersecting electrochemical impedance measurements with voltammetry of immobilized particles. Electrochim Acta 246:269–279CrossRefGoogle Scholar
  50. 50.
    Rahal C, Masmoudi M, Abdelhedi R, Sabot R, Jeannin M, Bouaziz M, Refait P (2016) Olive leaf extract as natural corrosion inhibitor for pure copper in 0.5 M NaCl solution: a study by voltammetry around OCP. J Electroanal Chem 769:53–61CrossRefGoogle Scholar
  51. 51.
    Grdeń M (2014) Interfacial capacitance of an oxidised copper electrode. J Electroanal Chem 713:47–57CrossRefGoogle Scholar
  52. 52.
    Yi P, Dong C, Xiao K, Man C, Li X (2018) In-situ investigation of the semiconductive properties and protective role of Cu2O layer formed on copper in a borate buffer solution. J Electroanal Chem 809:52–58CrossRefGoogle Scholar
  53. 53.
    Caprioli F, Martinelli A, Di Castro V, Decker F (2013) Effect of various terminal groups on long-term protective properties of aromatic SAMs on copper in acidic environment. J Electroanal Chem 693:86–94CrossRefGoogle Scholar
  54. 54.
    Ribotta SB, La orgia LF, Gassa LM, Folquer ME (2008) Characterization of anodic films formed on copper in 0.1 M borax solution. J Electroanal Chem 624(1-2):262–268CrossRefGoogle Scholar
  55. 55.
    Poljacek SM, Risovic D, Cigula T, Gojo M (2012) Application of electrochemical impedance spectroscopy in characterization of structural changes of printing plates. J Solid State Electrochem 16(3):1077–1089CrossRefGoogle Scholar
  56. 56.
    Xu J, Huang W, McCreery R (1996) NewsReader project. J Electroanal Chem 410(2):235–242CrossRefGoogle Scholar
  57. 57.
    Jang JH, Oh SM (2004) Complex capacitance analysis of porous carbon electrodes for electric double-layer capacitors. J Electrochem Soc 151(4):A571CrossRefGoogle Scholar
  58. 58.
    Chen G, Waraksa C, Cho H et al (2003) EIS studies of porous oxygen electrodes with discrete particles-I. Impedance of oxide catalyst supports. J Electrochem Soc 150:E423–E428CrossRefGoogle Scholar
  59. 59.
    Survila A, Surviliene A, Kanapeckaite S et al (2005) Oxide layers developed on copper electrodes in Cu (II) solutions containing ligands. J Electroanal Chem 582(1-2):221–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesSapienza University of RomeRomeItaly
  2. 2.Division de Ingenieria Mecanica e Industrial, Facultad de IngenieriaUniversidad Nacional Autonoma de Mexico (UNAM)CDMXMexico
  3. 3.Departament de Química AnalíticaUniversitat de ValènciaValènciaSpain
  4. 4.Department of Chemistry and Drug TechnologiesSapienza University of RomeRomeItaly

Personalised recommendations