Advertisement

Correlation between composition, electrical and electrochemical properties of LnCo1-xCrxO3 (Ln = Pr, Gd and x = 0, 0.5 and 1) perovskites

  • S. Dimitrovska-LazovaEmail author
  • S. Aleksovska
  • V. Mirceski
  • M. Pecovska-Gjorgjevich
Original Paper
  • 34 Downloads

Abstract

Electrical and electrocatalytic properties of two series of double perovskites, LnCo1-xCrxO3 (Ln = Pr, Gd, and x = 0, 0.5 and 1), were investigated and discussed in the light of perovskite composition. Studied perovskites were synthesized by the solution combustion method, and powder XRD patterns showed that all compounds crystallize in the GdFeO3-structure type. The morphology of perovskite crystals was studied by SEM, whereas obtained microphotographs implied porous microstructure. The conductivity of both perovskite series spanned in the range of semiconductors as revealed from electrical measurements. The electrocatalytic activity toward oxygen evolution reaction, oxidation of hydrogen peroxide, and methanol was studied in alkaline solutions by cyclic voltammetry. The influence of electronic, structural and morphological factors to the electrical and electrocatalytic properties is discussed. The praseodymium series showed higher electrocatalytic activity than the gadolinium one, while the most pronounced activity was detected for PrCoO3.

Keywords

Co/Cr-perovskites XRD Electrical conductivity Electrocatalytic activity 

Notes

Funding information

The financial support was from the BAS-MANU Collaborative Project “Structural characterization and investigation of electrical and catalytic properties of new synthesized inorganic and organic-inorganic complex perovskites”. VM was supported by the NATO grant SPS G5550.

Supplementary material

10008_2018_4181_Fig7_ESM.png
Supplementary Figure 1

(PNG 37 kb)

10008_2018_4181_MOESM1_ESM.eps (215 kb)
High resolution image (EPS 215 kb)
10008_2018_4181_Fig8_ESM.png
Supplementary Figure 2

(PNG 50 kb)

10008_2018_4181_MOESM2_ESM.eps (479 kb)
High resolution image (EPS 479 kb)
10008_2018_4181_Fig9_ESM.png
Supplementary Figure 3

(PNG 70 kb)

10008_2018_4181_MOESM3_ESM.eps (260 kb)
High resolution image (EPS 260 kb)
10008_2018_4181_Fig10_ESM.png
Supplementary Figure 4a

(PNG 61 kb)

10008_2018_4181_MOESM4_ESM.eps (589 kb)
High resolution image (EPS 588 kb)
10008_2018_4181_Fig11_ESM.png
Supplementary Figure 4b

(PNG 32 kb)

10008_2018_4181_MOESM5_ESM.eps (298 kb)
High resolution image (EPS 297 kb)
10008_2018_4181_Fig12_ESM.png
Supplementary Figure 5

(PNG 40 kb)

10008_2018_4181_MOESM6_ESM.eps (256 kb)
High resolution image (EPS 256 kb)

References

  1. 1.
    Zhu J, Li H, Zhong L, Xiao P, Xu X, Yang X, Zhao Z, Li J (2014) Perovskite oxides: preparation, characterizations and applications in heterogeneous catalysis. ACS Catal 4(9):2917–2940Google Scholar
  2. 2.
    Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2017Google Scholar
  3. 3.
    Voorhoeve RJH, Johnson DW Jr, Remeika JP, Gallagher PK (1977) Perovskite oxides: materials science in catalysis. Science 195(4281):827–833Google Scholar
  4. 4.
    Kovalevsky AV, Sviridov DV, Kharton VV, Naumovich EN, Frade JR (2006) Oxygen evolution on perovskite-type cobaltite anodes: an assessment of materials science-related aspects. Mater Sci Forum 514–516:377–381Google Scholar
  5. 5.
    Wang Y, Cheng H-P (2013) Oxygen reduction activity on perovskite oxide surfaces: a comparative first-principle study of LaMnO3, LaFeO3and LaCrO3. J Phys Chem C 117(5):2106–2112Google Scholar
  6. 6.
    Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385Google Scholar
  7. 7.
    Ge X, Sumboja A, Wuu D, An T, Li B, Goh FWT, Hor TSA, Zong Y, Liu Z (2015) Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal 5(8):4643–4667Google Scholar
  8. 8.
    Cheng X, Fabbri E, Nachtegaal M, Castelli IE, Kazzi ME, Haumont R, Marzari N, Schmidt TJ (2015) Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem Mater 27(22):7662–7672Google Scholar
  9. 9.
    Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4(1):2439–2445Google Scholar
  10. 10.
    Gupta S, Kellogg W, Xu H, Liu X, Cho J, Wu G (2016) Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chem Asian J 11(1):10–21Google Scholar
  11. 11.
    Tiwari SK, Koenig JF, Poillerat G, Chartier P, Singh RN (1998) Electrocatalysis of oxygen evolution/reduction on LaNiO3 prepared by a novel malic acid-aided method. J Appl Electrochem 28:114–119Google Scholar
  12. 12.
    Peng P-Y, Tsai Y-C, Yeh J-T, Lin Y-S, Huang C-M (2015) Influence of Sr substitution on catalytic performance of LaMnO3/Ni metal foam composite for CO oxidation. Aerosol Air Qual Res 15(4):1662–1671Google Scholar
  13. 13.
    Panich NM, Pirogova GN, Korosteleva RI, Voronin YV (1999) Oxidation of CO and hydrocarbons over perovskite-type complex oxides. Russ Chem Bull 48(4):694–697Google Scholar
  14. 14.
    Pirogova GN, Korosteleva RL, Panich VM, Lagutina TA, Voronin YV (1994) Catalytic oxidation of CO, hydrocarbons, and ethyl acetate over perovskite-type complex oxides. Russ Chem Bull 43(4):551–554Google Scholar
  15. 15.
    Zhang R, Villanueva A, Alamdari H, Kaliaguine S (2006) Reduction of NO by CO over nanoscale LaCo1−xCuxO3 and LaMn1−xCuxO3 perovskites. J Mol Catal A Chem 258(1-2):22–34Google Scholar
  16. 16.
    Merino NA, Barbero BP, Grange P, Cadús LE (2005) La1-xCaxCoO3 perovskite-type oxides: preparation, characterisation, stability, and catalytic potentiality for the total oxidation of propane. J Catal 231(1):232–244Google Scholar
  17. 17.
    de Araujo GC, Lima S, do C. Rangel M, La Parola V, Peña MA, Fierro JLG (2005) Characterization of precursors and reactivity of LaNi1-xCoxO3 for the partial oxidation of methane. Catal Today 107–108:906–912Google Scholar
  18. 18.
    Taguchi H, Matsuoka S, Kato M, Hirota K (2009) Crystal structure and methane oxidation on perovskite-type (La1-xNdx)CoO3 synthesized using citric acid. J Mater Sci 44(21):5732–5736Google Scholar
  19. 19.
    Zhuang S, Liu S, Huang C, Tu F, Zhang J, Li Y (2012) Electrocatalytic activity of nanoporous perovskite La1-xCaxCoO3 towards hydrogen peroxide reduction in alkaline medium. Int J Electrochem Sci 7:338–344Google Scholar
  20. 20.
    Poux T, Bonnefont A, Ryabova A, Kéranguéven G, Tsirlina GA, Savinova ER (2014) Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modelling. Phys Chem Chem Phys 16(27):13595–13600Google Scholar
  21. 21.
    Wang G, Bao Y, Tian Y, Xia J, Cao D (2010) Electrocatalytic activity of perovskite La1−xSrxMnO3 towards hydrogen peroxide reduction in alkaline medium. J Power Sources 195(19):6463–6467Google Scholar
  22. 22.
    Atta NF, Galal A, Ali SM (2014) The effect of the lanthanide ion-type in LnFeO3 on the catalytic activity for the hydrogen evolution in acidic medium. Int J Electrochem Sci 9:2132–2148Google Scholar
  23. 23.
    Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, DordrechtGoogle Scholar
  24. 24.
    Yu H-C, Fung K-Z, Guo T-C, Chang W-L (2004) Syntheses of perovskite oxides nanoparticles La1−xSrxMO3−δ (M = Co and Cu) as anode electrocatalyst for direct methanol fuel cell. Electrochim Acta 50(2-3):811–816Google Scholar
  25. 25.
    White JH, Sammells AF (1993) Perovskite anode electrocatalysis for direct methanol fuel cells. J Electrochem Soc 140(8):2167–2177Google Scholar
  26. 26.
    Deshpande K, Mukasyan A, Varma A (2006) High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells. J Power Sources 158(1):60–68Google Scholar
  27. 27.
    Lan A, Mukasyan AS (2008) Complex SrRuO3-Pt and LaRuO3-Pt catalysts for direct alcohol fuel cells. Ind Eng Chem Res 47(23):8989–8994Google Scholar
  28. 28.
    Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3(8):1499–1528Google Scholar
  29. 29.
    Madoui N, Omari M (2016) Synthesis and electrochemical properties of LaCr1-xCoxO3 (0 ≤ x ≤0.5) via co-precipitation method. J Inorg Organomet Polym 26(5):1005–1013Google Scholar
  30. 30.
    Wang P, Yao L, Wang M, Wu W (2000) XPS and voltammetric studies on La1-xSrxCoO3-δ perovskite oxide electrodes. J Alloys Compd 311(1):53–56Google Scholar
  31. 31.
    Knížek K, Jirák Z, Hejtmánek J, Veverka M, Maryško M, Maris G, Palstra TTM (2005) Structural anomalies associated with the electronic and spin transitions in LnCoO3. Eur Phys J B 47(2):213–220Google Scholar
  32. 32.
    Vermeiren Ph LR, Kingt HW, Murphy GJ, Vandenborre H (1987) Oxygen evolution on La0.8Sr0.2Ni0.2Co0.8O3 electrocatalysts in alkaline medium. Int J Hydrog Energy 12(7):469–472Google Scholar
  33. 33.
    Liu J, Co AC, Paulson S, Birss VI (2006) Oxygen reduction at sol-gel derived La0.8Sr0.2Co0.8Fe0.2O3 cathodes. Solid State Ionics 177(3-4):377–387Google Scholar
  34. 34.
    Singh RN, Malviya M, Anindita (2007) Electrochemical characterization of composite films of polypyrrole and La1-xSrx CoO3 (0 ≤ x ≤0.4) for electrocatalysis of O2 reduction. Indian J Chem 46A:1923–1928Google Scholar
  35. 35.
    Kharton VV, Naumovich EN, Vecher AA, Nikolaev AV (1995) Oxide ion conduction in solid solutions Ln1-xSrxCoO3-δ. J Solid State Chem 120(1):128–136Google Scholar
  36. 36.
    Pecovska-Gjorgjevich M, Aleksovska S, Marinšek M, Dimitrovska-Lazova S (2014) Impedance and AC conductivity of GdCr1−xCoxO3 (x = 0, 0.33, 0.5, 0.67 and 1) perovskites. J Am Ceram Soc 97(12):3864–3871Google Scholar
  37. 37.
    Pecovska-Gjorgjevich M, Aleksovska S, Dimitrovska-Lazova S, Marinšek M (2016) The role of Cr/Co substitution on dielectric properties of gadolinium orthochromite. Phys Scr 045805:91Google Scholar
  38. 38.
    Dimitrovska-Lazova S, Mirčeski V, Kovacheva D, Aleksovska S (2012) Solution combustion synthesis of YCoO3 and investigation of its catalytic properties by cyclic voltammetery. J Solid State Electrochem 16(1):219–225Google Scholar
  39. 39.
    Dimitrovska-Lazova S, Aleksovska S, Tzvetkov P, Mirčeski V, Kovacheva D (2015) Influence of Y-ion substitution on structural and electrochemical characteristics of YCo0.5Fe05O3. Bulg Chem Comm 47:245–252Google Scholar
  40. 40.
    Aleksovska S, Dimitrovska-Lazova S, Mirčeski V (2015) On the electrocatalytic properties of YCo1-xFexO3 (x = 0, 0.5 and 1) perovskite series. Studia UBB Chemia LX:53–62Google Scholar
  41. 41.
    Dimitrovska-Lazova S, Kovacheva D, Aleksovska S, Marinšek M, Tzvetkov P (2012) Synthesis and structural details of perovskites within the series PrCo1-xCrxO3 (x = 0, 0.33, 0.5, 0.67 and 1). Bulg Chem Comm 44:37–46Google Scholar
  42. 42.
    Dimitrovska-Lazova S, Kovacheva D, Tzvetkov P (2012) Structural characteristics of GdCo1–xCrxO3 (x = 0, 0.33, 0.5, 0.67, 1) perovskites. Bulg Chem Comm 44:47–54Google Scholar
  43. 43.
    Scherrer B, Harvey AS, Tanasescu S, Teodorescu F, Botea A, Conder K, Grundy AN, Martynczuk J, Gauckler LJ (2011) Correlation between electrical properties and thermodynamical stability of ACoO3-δ perovskites (A=La, Pr, Nd, Sm, Gd). Phys Rev B 84(8):085113Google Scholar
  44. 44.
    Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinGoogle Scholar
  45. 45.
    Tripathi AK, Lal HB (1982) Electrical transport in light rare-earth orthochromites. J Mater Sci 17(6):1595–1609Google Scholar
  46. 46.
    Yamaguchi S, Okimoto Y, Tokura Y (1996) Bandwidth of insulator-metal transitions in perovskite cobalt oxides. Phys Rev B 54(16):R11022–R11025Google Scholar
  47. 47.
    Ren Y, Yan J-Q, Zhou J-S, Goodenough JB, Jorgensen JD, Short S, Kim H, Proffen T, Chang S, McQueeney RJ (2011) Spin-state transitions in PrCoO3 studied with neutron powder diffraction. Phys Rev B 84(21):214409Google Scholar
  48. 48.
    Smith RDL, Pasquini C, Loos S, Chernev P, Klingan K, Kubella P, Mohammadi MR, Gonzalez-Flores D, Dau H (2017) Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides. Nat Commun 8(1):2022–2029Google Scholar
  49. 49.
    Deganello F, Liotta LF, Leonardi SG, Neri G (2016) Electrochemical properties of Ce-doped SrFeO3 perovskites-modified electrodes towards hydrogen peroxide oxidation. Electrochim Acta 190:939–947Google Scholar
  50. 50.
    Zhu Y, Zhou W, Shao Z (2017) Perovskite/carbon composites: applications in oxygen electrocatalysis. Small 13(12):1603793Google Scholar
  51. 51.
    JO'M B, Otagawa T (1984) The electrocatalysis of oxygen evolution on perovskites. J Electrochem Soc 131(2):290–302Google Scholar
  52. 52.
    Zhou J-S, Yan J-Q, Goodenough JB (2005) Bulk modulus anomaly in RCoO3 (R = La, Pr and Nd). Phys Rev B 71:220103RGoogle Scholar
  53. 53.
    Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365Google Scholar
  54. 54.
    Ye D, Xu Y, Luo L, Ding Y, Wang Y, Liu X, Xing L, Peng J (2012) A novel nonenzymatic hydrogen peroxide sensor based on LaNi0.5Ti0.5O3/CoFe2O4 modified electrode. Colloids Surf B Biointerfaces 89:10–14Google Scholar
  55. 55.
    Wang B, Gu S, Ding Y, Chu Y, Zhang Z, Ba X, Zhang Q, Li X (2013) A novel route to prepare LaNiO3 perovskite-type oxide nanofibers by electrospinning for glucose and hydrogen peroxide sensing. Analyst 138(1):362–367Google Scholar
  56. 56.
    Singh RN, Singh A, Anindita MD, Tiwari SK, Gunjan MK (2008) Influence of substitution of Ru on the electrocatalytic properties of the perovskite-type LaSrNiO4 electrode towards methanol oxidation. Indian J Chem 47A:1187–1193Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Chemistry, Faculty of Natural Sciences and MathematicsSs. Cyril and Methodius UniversitySkopjeRepublic of Macedonia
  2. 2.Department of Inorganic and Analytical Chemistry, Faculty of ChemistryUniversity of LodzLodzPoland
  3. 3.Institute of Physics, Faculty of Natural Sciences and MathematicsSs. Cyril and Methodius UniversitySkopjeRepublic of Macedonia

Personalised recommendations