Advertisement

Journal of Solid State Electrochemistry

, Volume 23, Issue 3, pp 803–810 | Cite as

Facile synthesis of thin black TiO2 − x nanosheets with enhanced lithium-storage capacity and visible light photocatalytic hydrogen production

  • Lin SunEmail author
  • Jie Xie
  • Qi Li
  • Fei Wang
  • Xinguo Xi
  • Lei Li
  • Jun Wu
  • Rong Shao
  • Zhidong ChenEmail author
Original Paper
  • 104 Downloads

Abstract

In combination of a facile and scalable solvothermal method and solid-phase reduction reactions, a novel two-dimensional black TiO2 − x nanosheet (TiO2 − x NS) with high specific surface area of 108 m2 g−1 and nearly total solar spectral absorption capability have been successfully prepared. With careful characterizations, the novel TiO2 − x NS showed enhanced electrochemical performance and visible-light photocatalytic activity than those of their white TiO2 nanosheet (TiO2 NS) precursors. The black TiO2 − x NS electrode delivered a reversible specific capacity of 160 mA h g−1 even after cycling at 0.5 C (1 C = 190 mA h g−1) for 300 times, which was significantly higher than the corresponding white TiO2 NS electrode (104 mA h g−1). Meanwhile, the TiO2 − x NS also exhibited enhanced ability of visible-light photocatalytic hydrogen production than that of the white TiO2 NS. It is expected that making white TiO2 NS into black ones is an effective way to design the photocatalysts with visible light response and the anodes with long lifetime and high rate performance in lithium ion batteries. The novel black TiO2 − x NS could find potential applications in the field of environmental management and energy storage and conversion.

Keywords

Solvothermal method Black TiO2 − x nanosheets Photocatalysis Anodes 

Notes

Funding information

This work was supported by the Research Fund of the Natural Science Foundation of Jiangsu Province (no. BK20181056), Joint Open of Jiangsu Collaborative Innovation Center for Ecological Building Material and Environmental Protection Equipments and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (no. JH201844), State Key Laboratory of Coordination Chemistry (no. SKLCC1802), the National Natural Science Foundation of China (no. 51772258), and the Major Program of Natural Science Research in Colleges and Universities of Jiangsu Province (no. 15KJA430007).

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10008_2018_4180_MOESM1_ESM.docx (7.9 mb)
ESM 1 (DOCX 8124 kb)

References

  1. 1.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38CrossRefGoogle Scholar
  2. 2.
    Parrino F, Camera Roda G, Loddo V, Palmisano L (2016) Elemental bromine production by TiO2 photocatalysis and/or ozonation. Angew Chem Int Edit 55(35):10391–10395CrossRefGoogle Scholar
  3. 3.
    Lee A, Joseph Libera A, Ruben Waldman Z, Ahmed A, Jason Avila R, Jeffrey Elam W, Seth Darling B (2017) Conformal nitrogen-doped TiO2 photocatalytic coatings for sunlight-activated membranes. Adv Sustain Syst 1(1-2):1600041CrossRefGoogle Scholar
  4. 4.
    Li X, Pi Y, Hou Q, Yu H, Li Z, Li Y, Xiao J (2018) Amorphous TiO2@NH2-MIL-125(Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity. Chem Commun 54(15):1917–1920CrossRefGoogle Scholar
  5. 5.
    Zhang YN, Qin N, Li J, Han S, Li P, Zhao G (2017) Facet exposure-dependent photoelectrocatalytic oxidation kinetics of bisphenol A on nanocrystalline {001} TiO2/carbon aerogel electrode. Appl Catal - B: Environ 216:30–40CrossRefGoogle Scholar
  6. 6.
    Krško O, Plecenik T, Roch T, Grančič B, Satrapinskyy L, Truchlý M, Ďurina P, Gregor M, Kúš P, Plecenik A (2017) Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sensor Actuat B- Chem 240:1058–1065CrossRefGoogle Scholar
  7. 7.
    Galstyan V (2017) Porous TiO2-based gas sensors for cyber chemical systems to provide security and medical diagnosis. Sensors 17(12):2947–2971CrossRefGoogle Scholar
  8. 8.
    Young Jae P, Ho-hyoung K, Dolly R, Deepika J, Akash K (2017) Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications. Nanotechnology 28:095502CrossRefGoogle Scholar
  9. 9.
    Wang Z, Zhang F, Xing H, Gu M, An J, Zhai B, An Q, Yu C, Li G (2017) Fabrication of nest-like TiO2 hollow microspheres and its application for lithium ion batteries with high-rate performance. Electrochim Acta 243:112–118CrossRefGoogle Scholar
  10. 10.
    Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J (2017) Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sources 353:237–244CrossRefGoogle Scholar
  11. 11.
    Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao D (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 29(48):1700523CrossRefGoogle Scholar
  12. 12.
    Zheng W, Yan Z, Dai Y, Du N, Jiang X, Dai H, Li X, He G (2017) Interpenetrated networks between graphitic carbon infilling and ultrafine TiO2 nanocrystals with patterned macroporous structure for high-performance lithium ion batteries. ACS Appl Mater Inter 9(24):20491–20500CrossRefGoogle Scholar
  13. 13.
    Cai Y, Wang HE, Zhao X, Huang F, Wang C, Deng Z, Li Y, Cao G, Su BL (2017) Walnut-like porous core/shell TiO2 with hybridized phases enabling fast and stable lithium storage. ACS Appl Mater Inter 9(12):10652–10663CrossRefGoogle Scholar
  14. 14.
    Wang HE, Zhao X, Li X, Wang Z, Liu C, Lu Z, Zhang W, Cao G (2017) rGO/SnS2/TiO2 heterostructured composite with dual-confinement for enhanced lithium-ion storage. J Mater Chem A 5(47):25056–25063CrossRefGoogle Scholar
  15. 15.
    Wang M, Hou Z, Abdulaziz Al Kheraif A, Xing B, Lin J (2018) Mini review of TiO2-based multifunctional nanocomposites for near-infrared light–responsive phototherapy. Adv Healthc Mater 7(20).  https://doi.org/10.1002/adhm.201800351
  16. 16.
    Shang H, Han D, Ma M, Li S, Xue W, Zhang A (2017) Enhancement of the photokilling effect of TiO2 in photodynamic therapy by conjugating with reduced graphene oxide and its mechanism exploration. J Photoch Photobio B 177:112–123CrossRefGoogle Scholar
  17. 17.
    Taheri ME, Petala A, Frontistis Z, Mantzavinos D, Kondarides DI (2017) Fast photocatalytic degradation of bisphenol A by Ag3PO4/TiO2 composites under solar radiation. Catal Today 280:99–107CrossRefGoogle Scholar
  18. 18.
    Lee G, Kim S, Kim S, Choi J (2017) SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes. Adv Funct Mater 27(39):1703538CrossRefGoogle Scholar
  19. 19.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:1200448Google Scholar
  20. 20.
    Wang T, Li W, Xu D, Wu X, Cao L, Meng J (2017) A novel and facile synthesis of black TiO2 with improved visible-light photocatalytic H2 generation: impact of surface modification with CTAB on morphology, structure and property. Appl Surf Sci 426:325–332CrossRefGoogle Scholar
  21. 21.
    Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi CL, Psaro R, Dal Santo V (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134(18):7600–7603CrossRefGoogle Scholar
  22. 22.
    Raja A, Chaves A, Yu J, Arefe G, Hill HM, Rigosi AF, Berkelbach TC, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus LE, Heinz TF, Reichman DR, Chernikov A (2017) Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat Commun 8:15251CrossRefGoogle Scholar
  23. 23.
    Raja SN, Rhyner R, Vuttivorakulchai K, Luisier M, Poulikakos D (2017) Length scale of diffusive phonon transport in suspended thin silicon nanowires. Nano Lett 17(1):276–283CrossRefGoogle Scholar
  24. 24.
    Huang YJ, Chen HC, Lin HK, Wei KH (2018) Doping ZnO electron transport layers with MoS2 nanosheets enhances the efficiency of polymer solar cells. ACS Appl Mater Inter 10(23):20196–20204CrossRefGoogle Scholar
  25. 25.
    Bandurin DA, Tyurnina AV, Yu GL et al (2016) High electron mobility, quantum hall effect and anomalous optical response in atomically thin InSe. Nat Nanotech 12:223–227CrossRefGoogle Scholar
  26. 26.
    Zhou W, Li W, Wang JQ, Qu Y, Yang Y, Xie Y, Zhang K, Wang L, Fu H, Zhao D (2014) Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 136(26):9280–9283CrossRefGoogle Scholar
  27. 27.
    Cui H, Zhao W, Yang C, Yin H, Lin T, Shan Y, Xie Y, Gu H, Huang F (2014) Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting. J Mater Chem A 2(23):8612–8616CrossRefGoogle Scholar
  28. 28.
    Xing M, Zhang Qiu JB, Tian B, Anpo M, Che M (2015) Photocatalysis: a Brown mesoporous TiO2-x/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H2 evolution. Small 11(16):1919–1919CrossRefGoogle Scholar
  29. 29.
    Chen S, Wang Y, Li J, Hu Z, Zhao H, Xie W, Wei Z (2018) Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing. Mater Res Bull 98:280–287CrossRefGoogle Scholar
  30. 30.
    Dang H, Cheng Z, Yang W, Chen W, Huang W, Li B, Shi Z, Qiu Y, Dong X, Fan H (2017) Room-temperature synthesis of CuxS (x = 1 or 2) co-modified TiO2 nanocomposite and its highly efficient photocatalytic H2 production activity. J Alloy Compd 709:422–430CrossRefGoogle Scholar
  31. 31.
    Zhu G, Xu J, Zhao W, Huang F (2016) Constructing black titania with unique nanocage structure for solar desalination. ACS Appl Mater Inter 8(46):31716–31721CrossRefGoogle Scholar
  32. 32.
    Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23(43):5444–5450CrossRefGoogle Scholar
  33. 33.
    Cao Y, Xing Z, Hu M, Li Z, Wu X, Zhao T, Xiu Z, Yang S, Zhou W (2017) Mesoporous black N-TiO2−x hollow spheres as efficient visible-light-driven photocatalysts. J Catal 356:246–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, and Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu ProvinceYancheng Institute of TechnologyYanchengPeople’s Republic of China
  2. 2.State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China
  3. 3.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  4. 4.School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations