Advertisement

Probe electrode study of cathodically polarized PtIr-YSZ interfaces

  • Karin Vels HansenEmail author
  • Kosova Kreka
  • Torben Jacobsen
Original Paper
  • 7 Downloads

Abstract

Local cathodic polarizations of yttria-stabilized zirconia were carried out with a PtIr probe as the working electrode in a controlled atmosphere high temperature scanning probe microscope to investigate the reduction of zirconia. Impedance spectroscopy was performed at 650 °C during increasing and decreasing polarization, in a range between 0.5 and − 2 V in 9% H2 in N2 saturated with water vapor at room temperature (25 °C). With increased polarization, the impedance spectra changed from a simple suppressed arc at low polarizations into two capacitive arcs separated by an inductive loop and followed by an inductive loop at low frequencies. Areas with high conductance as well as significantly decreased high-frequency resistances resulted from the polarizations and indicate the introduction of electronic conductivity in YSZ. Near the probe|YSZ contacts, areas with very low conductance and accumulation of Si-containing particles were observed, pointing to additional migration of silica impurities towards the probe.

Keywords

PtIr-YSZ Strong cathodic polarization Inductive impedance CAHT-SPM 

Notes

Acknowledgments

Stimulating discussions with Mogens Bjerg Mogensen and Christodoulos Chatzichristodoulou are greatly appreciated.

Funding information

We gratefully acknowledge financial support from Energinet.dk through the ForskEL program “Solid Oxide Fuel Cells for the Renewable Energy Transition” contract no 2014-1-12231 and from ECoProbe (DFF—4005-00129) funded by the Danish Independent Research Council.

References

  1. 1.
    Casselton REW (1974) Blackening in yttria stabilized zirconia due to cathodic processes at solid platinum electrodes. J Appl Electrochem 4:25–48CrossRefGoogle Scholar
  2. 2.
    Chen M, Liu Y-L, Bentzen JJ, Zhang W, Sun X, Hauch A, Tao Y, Bowen JR, Hendriksen PV (2013) Microstructural degradation of Ni/YSZ electrodes in solid oxide electrolysis cells under high current. J Electrochem Soc 160:F883–F891CrossRefGoogle Scholar
  3. 3.
    Hansen KV, Chen M, Jacobsen T, Thydén K, Simonsen SB, Koch S, Mogensen M (2016) Effects of strong cathodic polarization of the Ni-YSZ interface. J Electrochem Soc 163:F1217–F1227CrossRefGoogle Scholar
  4. 4.
    Szász J, Klotz D, Störmer H, Gerthsen D, Ivers-Tiffée E (2013) Nanostructured Ni/YSZ anodes: Fabrication and performance analysis. ECS Trans 57:1469–1478CrossRefGoogle Scholar
  5. 5.
    Klotz D, Butz B, Leonide A, Hayd J, Gerthsen D, Ivers-Tiffée E (2011) Performance enhancement of SOFC anode through electrochemically induced Ni/YSZ nanostructures. J Electrochem Soc 158:B587–B595CrossRefGoogle Scholar
  6. 6.
    Eder D, Kramer R (2002) The stoichiometry of hydrogen reduced zirconia and its influence on catalytic activity. Part I: Volumetric and conductivity studies. Phys Chem Chem Phys 4:795–801CrossRefGoogle Scholar
  7. 7.
    Levy M, Fouletier J, Kleitz M (1988) Model for the electrical conductivity of reduced stabilized zirconia. Solid State Sci Technol 135:1584–1589Google Scholar
  8. 8.
    Ben-Michael R, Tannhauser DS (1991) Visual observation of chemical diffusion in stabilized zirconia. Appl Phys A Mater Sci Process 53:185–188CrossRefGoogle Scholar
  9. 9.
    Sinhamahapatra A, Jeon J-P, Kang J, Han B, Yu J-S (2016) Oxygen-deficient zirconia (ZrO ): a new material for solar light absorption. Sci Rep 6:27218CrossRefGoogle Scholar
  10. 10.
    Eder D, Kramer R (2006) Impedance spectroscopy of reduced monoclinic zirconia. Phys Chem Chem Phys 8:4476–4483CrossRefGoogle Scholar
  11. 11.
    Bonola C, Camagni P, Chiodelli P, Samoggia G (1991) Study of defects introduced by electroreduction in YSZ. Radiat Eff Defects Solids 119-121:457–462CrossRefGoogle Scholar
  12. 12.
    Rutman J, Raz S, Riess I (2006) Reducing over potential by surface mixed ionic–electronic conduction. Solid State Ionics 177:1771–1777CrossRefGoogle Scholar
  13. 13.
    Janek J, Korte C (1999) Electrochemical blackening of yttria-stabilized zirconia – morphological instability of the moving reaction front. Solid State Ionics 116:181–195CrossRefGoogle Scholar
  14. 14.
    Farley JM, Thorp JS, Ross JS, Saunders GA (1972) Effect of current-blackening on the elastic constants of yttria-stabilised zirconia. J Mater Sci 7:475–476CrossRefGoogle Scholar
  15. 15.
    Luerssen B, Janek J, Günter S, Kiskinova M, Imbihl R (2002) Microspectroscopy at a moving reduction front in zirconia solid electrolyte. Phys Chem Chem Phys 4:2673–2679CrossRefGoogle Scholar
  16. 16.
    Siegel DA, El Gabaly F, McCarty KF, Bartelt NC (2015) In situ characterization of the formation of a mixed conducting phase on the surface of yttria-stabilized zirconia near Pt electrodes. Phys Rev B 92:125421CrossRefGoogle Scholar
  17. 17.
    Kreka K, Hansen KV, Mogensen MB, Norrman K, Chatzichristodoulou C, Jacobsen T (2018) The impact of strong cathodic polarization on Ni-YSZ microelectrodes. J Electrochem Soc 165:F253–F263CrossRefGoogle Scholar
  18. 18.
    Stalick JK, Waterstrat RM (2007) The zirconium-platinum phase diagram. J Alloys Compd 430:123–131CrossRefGoogle Scholar
  19. 19.
    Wu Y, Hansen KV, Jacobsen T, Mogensen M (2011) Impedance measurements on Au microelectrodes using controlled atmosphere high temperature scanning probe microscope. Solid State Ionics 197:32–36CrossRefGoogle Scholar
  20. 20.
    Hansen KV, Sander C, Koch S, Mogensen M (2007) Controlled atmosphere high temperature SPM for electrochemical measurements. J Phys Conf Ser 61:389–393CrossRefGoogle Scholar
  21. 21.
    Hansen KV, Wu Y, Jacobsen T, Mogensen MB, Theil Kuhn L (2013) Improved controlled atmosphere high temperature scanning probe microscope. Rev Sci Instrum 84:073701-073701-7Google Scholar
  22. 22.
    Huber TM, Opitz A, Kubicek M, Hutter H, Fleig J (2014) Temperature gradients in microelectrode measurements: relevance and solutions for studies of SOFC electrode materials. Solid State Ionics 268:82–93CrossRefGoogle Scholar
  23. 23.
    Hansen KV, Norrman K, Jacobsen T (2016) High temperature conductance mapping for correlation of electrical properties with micron-sized chemical and microstructural features. Ultramicroscopy 170:69–76CrossRefGoogle Scholar
  24. 24.
    Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher hemperatures. US Geol Surv Bull:2131Google Scholar
  25. 25.
    Boukamp BA (2001) Interpretation of an 'inductive loop' in the impedance of an oxygen ion conducting electrolyte/metal electrode system. Solid State Ionics 143:47–55CrossRefGoogle Scholar
  26. 26.
    Adler SB (2002) Reference electrode placement in thin solid electrolytes. J Electrochem Soc 149:E166–E172CrossRefGoogle Scholar
  27. 27.
    Masó N, West A (2015) Electronic conductivity in yttria-stabilized zirconia under a small dc bias. Chem Mater 27:1552–1558CrossRefGoogle Scholar
  28. 28.
    Park J-H, Blumenthal RN (1989) Electronic transport in 8 mole percent Y O -ZrO. J Electrochem Soc 136:2867–2876CrossRefGoogle Scholar
  29. 29.
    Appel CC, Bonanos N, Horsewell A, Linderoth S (2001) Ageing behaviour of zirconia stabilised by yttria and manganese oxide. J Mater Sci 36:4493–4501CrossRefGoogle Scholar
  30. 30.
    Holm R (1967) Stationary Contacts. In: Electric contacts, 4th edn. Springer-Verlag, Berlin, pp 18Google Scholar
  31. 31.
    Newman J (1966) Resistance for flow of current to a disk. J Electrochem Soc 113:501–503CrossRefGoogle Scholar
  32. 32.
    Schefold J, Brisse A, Zahid M (2009) Electronic conduction of yttria-stabilized zirconia electrolyte in solid oxide cells operated in high temperature water electrolysis. J Electrochem Soc 156:B897–B904CrossRefGoogle Scholar
  33. 33.
    Klotz D, Szász J, Weber A, Ivers-Tiffée E (2012) Nano-structuring of SOFC anodes by reverse current treatment. ECS Trans 45:241–249CrossRefGoogle Scholar
  34. 34.
    Jacobsen T, Mogensen M (2008) The course of oxygen partial pressure and electric potentials across an oxide electrolyte cell. ECS Trans 13:259–273CrossRefGoogle Scholar
  35. 35.
    Jamnik J, Maier J (2001) Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys Chem Chem Phys 3:1678CrossRefGoogle Scholar
  36. 36.
    Cole KS (1965) Electrodiffusion models for the membrane of squid giant axon. Physiol Rev 45:340–379CrossRefGoogle Scholar
  37. 37.
    Sandblom J, Walker JL, Eisenman G (1972) The transient response and impedance locus of a mobile site membrane. Biophys J 12:587–596CrossRefGoogle Scholar
  38. 38.
    Sistat P, Kozmai A, Pismenskaya N, Larchet C, Popurcelly G, Nikonenko V (2008) Low-frequency impedance of an ion-exchange membrane system. Electrochim Acta 53:6380–6390CrossRefGoogle Scholar
  39. 39.
    Taibl S, Fafilek G, Fleig J (2016) Impedance spectra of Fe-doped SrTiO thin films upon bias voltage: inductive loops as a trace of ion motion. Nanoscale 8:13954–13966CrossRefGoogle Scholar
  40. 40.
    Schouler EJL, Kleitz M (1987) Electrocatalysis and inductive effects at the gas, Pt/stabilized zirconia interface. J Electrochem Soc 134:1045–1050CrossRefGoogle Scholar
  41. 41.
    Tao Y, Shao J, Cheng S (2016) Electrochemically scavenging the silica impurities at the Ni-YSZ triple phase boundary of solid oxide cells. ACS Appl Mater Interfaces 8:17023–17027CrossRefGoogle Scholar
  42. 42.
    Hansen KV, Norrman K, Mogensen M (2006) TOF-SIMS studies of yttria-stabilised zirconia. Surf Interface Anal 38:911–916CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Energy Conversion and StorageTechnical University of DenmarkRoskildeDenmark
  2. 2.Department of ChemistryTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations