Journal of Solid State Electrochemistry

, Volume 23, Issue 3, pp 749–758 | Cite as

The effects of the size and content of BaTiO3 nanoparticles on solid polymer electrolytes for all-solid-state lithium-ion batteries

  • Yi Zhang
  • Xiaohui WangEmail author
  • Wei Feng
  • Yichao Zhen
  • Peiyao Zhao
  • Longtu Li
  • Ziming Cai
Original Paper


For all-solid-state lithium-ion batteries, several disadvantages such as low ionic conductivity and poor interfacial stability have been concerned. According to previous studies, BaTiO3 nanoparticles can improve the electrochemical properties of PEO-based solid polymer electrolytes (SPEs). This study elucidates the effects of different sizes and contents of BaTiO3 fillers on SPEs. The BaTiO3 nanoparticles with average size of 5 nm, 100 nm, and 500 nm and content from 4 to 20 wt% were incorporated into SPEs by solution casting method. For the SPE with 8 wt% 5 nm BaTiO3, it possesses the highest ionic conductivity of 2.2 × 10−5 S cm−1 at 25 °C and 1.9 × 10−3 S cm−1 at 80 °C. In the LiFePO4/SPE with 8 wt% 5 nm BaTiO3/Li cell, it indicates a high initial discharge specific capacity of 140.7 mAh g−1 at 0.1 °C rate and the specific capacity remains 97.8% after 50 cycles at 80 °C.


PEO-based solid polymer electrolytes Barium titanate (BaTiO3Filler size and content 


Funding information

The work was supported by the National Natural Science Foundation of China (Grant No. 51672148, 51,272,123), Ministry of Sciences and Technology of China through National Basic Research Program of China (973 Program 2015CB654604).


  1. 1.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657CrossRefGoogle Scholar
  2. 2.
    Stephan AM, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47(16):5952–5964CrossRefGoogle Scholar
  3. 3.
    Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet JP, Phan TN, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M (2013) Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat Mater 12(5):452–457CrossRefGoogle Scholar
  4. 4.
    Soo PP, Huang B, Jang YI, Chiang Y, Sadoway DR, Mayes AM (1999) Rubbery block copolymer electrolytes for solid-state rechargeable lithium batteries. J Electrochem Soc 146(1):32–37CrossRefGoogle Scholar
  5. 5.
    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K (2011) A lithium superionic conductor. Nat Mater 10(9):682–686CrossRefGoogle Scholar
  6. 6.
    Quartarone E, Mustarelli P (2011) Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 40(5):2525–2540CrossRefGoogle Scholar
  7. 7.
    Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759–770CrossRefGoogle Scholar
  8. 8.
    Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162(1):685–689CrossRefGoogle Scholar
  9. 9.
    Macglashan GS, Andreev YG, Bruce PG (1999) Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 398(6730):792–794CrossRefGoogle Scholar
  10. 10.
    Yang LY, Wei DX, Xu M, Yao YF, Chen Q (2014) Transferring lithium ions in nanochannels: a PEO/Li+ solid polymer electrolyte design. Angew Chem 126(14):3705–3709CrossRefGoogle Scholar
  11. 11.
    Allcock HR, Kuharcik SE, Reed CS, Napierala ME (1996) Synthesis of polyphosphazenes with ethyleneoxy-containing side groups: new solid electrolyte materials. Macromolecules 29(10):3384–3389CrossRefGoogle Scholar
  12. 12.
    Wieczorek W, Such K, Wyciślik H, Płocharski J (1989) Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives. Solid State Ionics 36:55–257CrossRefGoogle Scholar
  13. 13.
    Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458CrossRefGoogle Scholar
  14. 14.
    Fan L, Nan CW, Zhao S (2003) Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ionics 164(1-2):81–86CrossRefGoogle Scholar
  15. 15.
    Damen L, Hassoun J, Mastragostino M, Scrosati B (2010) Solid-state, rechargeable Li/LiFePO4, polymer battery for electric vehicle application. J Power Sources 195(19):6902–6904CrossRefGoogle Scholar
  16. 16.
    Fan L, Dang Z, Wei G, Nan CW, Li M (2003) Effect of nanosized ZnO on the electrical properties of (PEO)16LiClO4, electrolytes. Mater Sci Eng B 99:340–343CrossRefGoogle Scholar
  17. 17.
    Sun HY, Sohn HJ, Yamamoto O, Takeda Y, Imanishi N (1999) Enhanced lithium-ion transport in PEG-based composite polymer electrolytes with ferroelectric BaTiO3. J Electrochem Soc 146(5):1672–1676CrossRefGoogle Scholar
  18. 18.
    Li Q, Imanishi N, Takeda Y, Hirano A, Yamamoto O (2002) PEO-based composite lithium polymer electrolyte, PEO-BaTiO3-Li (C2F5SO2)2N. Ionics 8(1-2):79–84CrossRefGoogle Scholar
  19. 19.
    Hao Y, Wang X, Zhang H, Li L (2013) Sol–gel based synthesis of ultrafine tetragonal BaTiO3. J Sol-Gel Sci Technol 67:82–187CrossRefGoogle Scholar
  20. 20.
    Ji J, Li B, Zhong WH (2010) Simultaneously enhancing ionic conductivity and mechanical properties of solid polymer electrolytes via a copolymer multi-functional filler. Electrochim Acta 55(28):9075–9082CrossRefGoogle Scholar
  21. 21.
    Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources 146(1-2):397–401CrossRefGoogle Scholar
  22. 22.
    Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 16(2):161–170CrossRefGoogle Scholar
  23. 23.
    Rajendran S, Kannan R, Mahendran O (2001) Ionic conductivity studies in poly(methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithium salts. J Power Sources 96(2):406–410CrossRefGoogle Scholar
  24. 24.
    Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156CrossRefGoogle Scholar
  25. 25.
    Chan CK, Yang T, Weller JM (2017) Nanostructured garnet-type Li7La3Zr2O12: synthesis, properties, and opportunities as electrolytes for Li-ion batteries. Electrochim Acta 253:268–280CrossRefGoogle Scholar
  26. 26.
    Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46(16):2457–2461CrossRefGoogle Scholar
  27. 27.
    Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52(2):261–268CrossRefGoogle Scholar
  28. 28.
    Wieczorek W, Siekierski M (1994) A description of the temperature dependence of the conductivity for composite polymeric electrolytes by effective medium theory. J Appl Phys 76(4):2220–2226CrossRefGoogle Scholar
  29. 29.
    Li Z, Su G, Gao D, Wang X, Li X (2004) Effect of Al2O3 nanoparticles on the electrochemical characteristics of P(VDF-HFP)-based polymer electrolyte. Electrochim Acta 49(26):4633–4639CrossRefGoogle Scholar
  30. 30.
    Zhou J, Fedkiw PS (2004) Ionic conductivity of composite electrolytes based on oligo (ethylene oxide) and fumed oxides. Solid State Ionics 166(3-4):275–293CrossRefGoogle Scholar
  31. 31.
    Sun HY, Takeda Y, Imanishi N, Yamamoto O, Sohn HJ (2000) Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes. J Electrochem Soc 147(7):2462–2467CrossRefGoogle Scholar
  32. 32.
    Dias FB, Plomp L, Veldhuis JBJ (2000) Trends in polymer electrolytes for secondary lithium batteries. J Power Sources 88(2):169–191CrossRefGoogle Scholar
  33. 33.
    Kerr JB, Han YB, Liu G, Reader C, Xie J (2004) Interfacial behavior of polymer electrolytes. Electrochim Acta 50(2-3):235–242CrossRefGoogle Scholar
  34. 34.
    Kumar B, Scanlon L, Marsh R, Mason R, Higgins R, Baldwin R (2001) Structural evolution and conductivity of PEO: LiBF4–MgO composite electrolytes. Electrochim Acta 46(10-11):1515–1521CrossRefGoogle Scholar
  35. 35.
    Itoh T, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2. Solid State Ionics 156(3-4):393–399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yi Zhang
    • 1
  • Xiaohui Wang
    • 1
    Email author
  • Wei Feng
    • 1
  • Yichao Zhen
    • 1
  • Peiyao Zhao
    • 1
  • Longtu Li
    • 1
  • Ziming Cai
    • 1
  1. 1.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations