Journal of Solid State Electrochemistry

, Volume 23, Issue 3, pp 735–748 | Cite as

Morphological and structural evolution of Si-Cu nanocomposites by an instantaneous vapor-liquid-solid growth and the electrochemical lithiation/delithiation performances

  • Jingshuang Liang
  • Yulin Yang
  • Jian Gao
  • Lei Zhou
  • Ming Gao
  • Zhongyuan Zhang
  • Wenfei Yang
  • Muhammad Javid
  • Youngguan Jung
  • Xinglong DongEmail author
  • Guozhong Cao
Original Paper


Polymorphic Si-Cu nanocomposites of Si@Cu3Si nanowires, Si@Cu3Si nanorods, and Si@Cu3Si(Cu) nanocapsules are synthesized via the high-energy arc-discharge plasma. Electrochemical performances of these materials as anodes for lithium-ion batteries are also investigated. It is found that the morphologies and structures of above Si-Cu nanocomposites are alterable by the composition of the raw target and synthetic conditions. Optical emission spectroscopy is adopted to reveal the energetic states of excited atoms in plasma; thus, the temperature of working plasma as well as the evaporation rate of each element can be evaluated, in which both favor to control the composition of Si-Cu nanopowder product and the aborative nanostructures. Formation of multifarious Si-Cu nanostructures is understood from the in situ nucleation and anisotropic growth processes, induced by an instantaneous vapor-liquid-solid mechanism within the robust plasma. The optimal composition and microstructure of Si@Cu3Si nanorods are found for the excellent electrochemical behaviors, typically a stable discharge capacity of 783 mAh g−1 with the coulombic efficiency of 98.51% at 100 mA g−1 after 100 cycles. Good performances are attributed to one-dimensional Si-Cu nanostructure, which favors to promote Li+ ion diffusion. Metallic Cu component released from Cu3Si precursor enhances the conductivity, buffers the volume change, and facilitates the stabilization in cycling.


Polymorphic Si-Cu nanocomposite Arc-discharge plasma Anode Lithium-ion battery 


Funding information

This work was supported by the National Natural Science Foundations of China (Nos. 51331006 and 51271044).


  1. 1.
    Wang W, Wang YW, Gu L, Lu R, Qian HL, Peng XS, Sha J (2015) SiC@Si core-shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries. J Power Sources 293:492–497CrossRefGoogle Scholar
  2. 2.
    Ma RJ, Liu YF, Yang YX, Pu KC, Gao MX, Pan HG (2015) Li-Si-alloy-assisted improvement in the intrinsic cyclability of Mg2Si as an anode material for Li-ion batteries. Acta Mater 98:128–134CrossRefGoogle Scholar
  3. 3.
    Kim SJ, Kim MC, Han SB, Lee GH, Choe HS, Moon SH, Kwak DH, Hong S, Park KW (2017) 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries. J Ind Eng Chem 49:105–111CrossRefGoogle Scholar
  4. 4.
    Zhang YG, Du N, Zhu SJ, Chen YF, Lin YF, Wu SL, Yang DR (2017) Porous silicon in carbon cages as high-performance lithium-ion battery anode Materials. Electrochim Acta 252:438–445CrossRefGoogle Scholar
  5. 5.
    Lee B, Liu TY, Kim SK, Chang H, Eom K, Xie LX, Chen S, Jang HD, Lee SW (2017) Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries. Carbon 119:438–445CrossRefGoogle Scholar
  6. 6.
    Liu RZ, Zhang Y, Ning ZJ, Xu YX (2017) A catalytic microwave process for superfast preparation of high-quality reduced graphene oxide. Angew Chem Int Ed 56:15677–15682CrossRefGoogle Scholar
  7. 7.
    Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127CrossRefGoogle Scholar
  8. 8.
    Ashuri M, He Q, Shaw LL (2015) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8:74–103CrossRefGoogle Scholar
  9. 9.
    Yu XH, Xue FH, Huang H, Liu CJ, Yu JY, Sun YJ, Dong XL, Cao GZ, Jung YG (2014) Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale 6:6860–6865CrossRefGoogle Scholar
  10. 10.
    Qin JG, Wu MQ, Feng TT, Chen C, Tu CY, Li XH, Duan C, Xia DW, Wang DX (2017) High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries. Electrochim Acta 256:259–266CrossRefGoogle Scholar
  11. 11.
    Liang GM, Qin XY, Zou JS, Luo LY, Wang YZ, Wu MY, Zhu H, Chen GH, Kang FY, Li BH (2018) Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127:424–431CrossRefGoogle Scholar
  12. 12.
    Neuberger M (1963) Silicon: electrical conductivity data sheets. DTIC DocumentGoogle Scholar
  13. 13.
    Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sour 195:7904–7929CrossRefGoogle Scholar
  14. 14.
    Liang K, Yang HL, Guo WX, Du JL, Tian LY, Wen XF (2018) Facile preparation of nanoscale silicon as an anode material for lithium ion batteries by a mild temperature metathesis route. J Alloys Compd 735:441–444CrossRefGoogle Scholar
  15. 15.
    Chen H, Xiao Y, Wang L, Yang Y (2011) Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sour 196:6657–6662.Google Scholar
  16. 16.
    Au M, He Y, Zhao Y, Ghassemi H, Yassar RS, Garcia-Diaz B, Adams T (2011) Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries. J Power Sources 196:9640–9647CrossRefGoogle Scholar
  17. 17.
    Polat BD, Eryilmaz OL, Keles O, Erdemir A, Amine K (2015) Compositionally graded Si-Cu thin film anode by magnetron sputtering for lithium ion battery. Thin Solid Films 596:190–197CrossRefGoogle Scholar
  18. 18.
    Deng L, Cui Y, Chen J, Wu J, Baker AP, Li Z, Zhang X (2016) A Core-Shell Si@NiSi2/Ni/C Nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 192:303–309CrossRefGoogle Scholar
  19. 19.
    Huang T, Sun DY, Yang WX, Wang HL, Wu Q, Xiao RS (2018) Binder-free anode with porous Si/Cu architecture for lithium-ion batteries. Scripta Mater 146:304–307CrossRefGoogle Scholar
  20. 20.
    Xu YL, Swaans E, Chen SB, Basak S, Harks PPRML, Peng B, Zandbergen HW, Borsa DM, Mulder FM (2017) A high-performance Li-ion anode from direct deposition of Si nanoparticles. Nano Energy 38:477–485CrossRefGoogle Scholar
  21. 21.
    Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429CrossRefGoogle Scholar
  22. 22.
    Hu LB, Wu H, Hong SS, Cui LF, McDonough JR, Bohy S, Cui Y (2010) Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem Commun 47:367–369CrossRefGoogle Scholar
  23. 23.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nature Nanotech 3:31–35CrossRefGoogle Scholar
  24. 24.
    Laïk B, Eude L, Pereira-Ramos JP, Cojocaru CS, Pribat D, Rouvière E (2008) Silicon nanowires as negative electrode for lithium-ion micro batteries. Electrochim Acta 53:5528–5532CrossRefGoogle Scholar
  25. 25.
    Polat BD, Keles O, Amine K (2016) Compositionally-graded silicon copper helical arrays as anodes for lithium-ion batteries. J Power Sources 304:273–281CrossRefGoogle Scholar
  26. 26.
    Prosini PP, Cento C, Alessandrini F, Gislon P, Mancini A, Rufoloni A, Rondino F, Santoni A (2014) Electrochemical characterization of silicon nanowires as an anode for lithium batteries. Solid State Ion 260:49–54CrossRefGoogle Scholar
  27. 27.
    Kim SH, Yook SH, Kannan AG, Kim SK, Park C, Kim DW (2016) Enhancement of the electrochemical performance of silicon anodes through alloying with inert metals and encapsulation by graphene nanosheets. Electrochim Acta 209:278–284CrossRefGoogle Scholar
  28. 28.
    Sethuraman VA, Kowolik K, Srinivasan V (2011) Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J Power Sources 196:393–398CrossRefGoogle Scholar
  29. 29.
    Zhang PX, Huang L, Li YL, Ren XZ, Deng LB, Yuan QH (2016) Si/Ni3Si-encapulated carbon nanofiber composites as three-dimensional network structured anodes for lithium-ion batteries. Electrochim Acta 192:385–391CrossRefGoogle Scholar
  30. 30.
    Usui H, Nouno K, Takemoto Y, Nakada K, Ishii A, Sakaguchi H (2014) Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites. J Power Sources 268:848–852CrossRefGoogle Scholar
  31. 31.
    Usui H, Nomura M, Nishino H, Kusatsu M, Murota T, Sakaguchi H (2014) Gadolinium silicide/silicon composite with excellent high-rate performance as lithium-ion battery anode. Mater Lett 130:61–64CrossRefGoogle Scholar
  32. 32.
    Johnson DC, Mosby JM, Riha SC, Prieto AL (2010) Synthesis of copper silicide nanocrystallites embedded in silicon nanowires for enhanced transport properties. J Mater Chem 20:1993–1998CrossRefGoogle Scholar
  33. 33.
    Polat BD, Keles O, Amine K (2014) Well-aligned, ordered, nanocolumnar, Cu-Si thin film as anode material for lithium-ion batteries. J Power Sources 270:238–247CrossRefGoogle Scholar
  34. 34.
    Lee J, Hasegawa K, Momma T, Osaka T, Noda S (2015) One-minute deposition of micrometre-thick porous Si-Cu anodes with compositional gradients on Cu current collectors for lithium secondary batteries. J Power Sources 286:540–550CrossRefGoogle Scholar
  35. 35.
    Yen JP, Chang CC, Lin YR, Shen ST, Hong JL (2014) Sputtered copper coating on silicon/graphite composite anode for lithium ion batteries. J Alloys Compd 598:184–190CrossRefGoogle Scholar
  36. 36.
    Polat BD, Keles O, Chen ZH, Amine K (2016) Si-Cu alloy nanowires grown by oblique angle deposition as a stable negative electrode for Li-ion batteries. J Mater Sci 51:6207–6219CrossRefGoogle Scholar
  37. 37.
    Xu CX, Hao Q, Zhao DY (2016) Facile fabrication of a nanoporous Si/Cu composite and its application as a high-performance anode in lithiumion batteries. Nano Research 9:908–916CrossRefGoogle Scholar
  38. 38.
    Zhang ZL, Wang ZL, Lu XM (2018) Multishelled Si@Cu microparticles supported on 3D Cu current collectors for stable and binder-free anodes of lithium-ion batteries. ACS Nano 12:3587–3599CrossRefGoogle Scholar
  39. 39.
    Lee W, Jue M, Lee S, Kim C (2013) Microscopic analysis of thermally-driven formation of Cu-Si alloy nanoparticles in a Cu/Si template. J Korean Phys Soc 63:2128–2132CrossRefGoogle Scholar
  40. 40.
    Liu CS, Chen LJ (1994) The dependence of room-temperature oxidation of silicon catalyzed by Cu3Si on the silicicie grain size. J Appl Phys 75:2730–2732CrossRefGoogle Scholar
  41. 41.
    Harper JME, Charai A, Stolt L, d’Heurle FM, Fryer PM (1990) Room-temperature oxidation of silicon catalyzed by Cu3Si. Appl Phys Lett 56:2519–2521CrossRefGoogle Scholar
  42. 42.
    Wagner RS, Ellis WC (2004) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89–90CrossRefGoogle Scholar
  43. 43.
    Cai H, Tong D, Wang Y, Song X, Ding B (2011) Reactive synthesis of porous Cu3Si compound. J Alloys Compd 509:1672–1676CrossRefGoogle Scholar
  44. 44.
    Jung SJ, Lutz T, Bell AP, McCarthy EK, Boland JJ (2012) Free-standing, single-crystal Cu3Si nanowires. Cryst Growth Des 12:3076–3081CrossRefGoogle Scholar
  45. 45.
    Xu K, He Y, Ben L, Li H, Huang X (2015) Enhanced electrochemical performance of Si-Cu-Ti thin films by surface covered with Cu3Si nanowires. J Power Sources 281:455–460CrossRefGoogle Scholar
  46. 46.
    Murugesan S, Harris JT, Korgel BA, Stevenson KJ (2012) Copper coated amorphous silicon particles as anode material for lithium ion batteries. Chem Mater 24:1306–1315CrossRefGoogle Scholar
  47. 47.
    Polat BD, Keles O (2015) Improving Si anode performance by forming copper capped copper-silicon thin film anodes for rechargeable lithium ion batteries. Electrochim Acta 170:63–71CrossRefGoogle Scholar
  48. 48.
    Liu CJ, Huang H, Cao GZ, Xue FH, Camacho RAP, Dong XL (2014) Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode. Electrochim Acta 144:376–382CrossRefGoogle Scholar
  49. 49.
    Liu CJ, Xue FH, Huang H, Yu XH, Xie CJ, Shi MS, Cao GZ, Jung YG, Dong XL (2014) Preparation and electrochemical properties of Fe-Sn (C) nanocomposites as anode for lithium-ion batteries. Electrochim Acta 129:93–99CrossRefGoogle Scholar
  50. 50.
    Yu JY, Gao J, Xue FH, Yu XH, Yu HT, Dong XL, Huang H, Ding A, Quan X, Cao GZ (2015) Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Adv 5:68714–68721CrossRefGoogle Scholar
  51. 51.
    Massalski TB (1990) Binary alloy phase diagram. Second edition ASM InternationalGoogle Scholar
  52. 52.
    Chromik RR, Neils WK, Cotts EJ (1999) Thermodynamic and kinetic study of solid state reactions in the Cu-Si system. J Appl Phys 86:4273–4281CrossRefGoogle Scholar
  53. 53.
    Sufryd K, Ponweiser N, Riani P, Richter KW, Cacciamani G (2011) Experimental investigation of the Cu-Si phase diagram at X(Cu) > 0.72. Intermetallics 19:1479–1488CrossRefGoogle Scholar
  54. 54.
    Langmuir I, Iklé M (1913) The vapor pressure of metallic tungsten. Phys Rev 2:329–342CrossRefGoogle Scholar
  55. 55.
    Kołaczkiewicz J, Bauer E (1985) Clausius-Clapeyron equation analysis of two-dimensional vaporization. Surf Sci 155:700–714CrossRefGoogle Scholar
  56. 56.
    Yao Y, Fan S (2007) Si nanowires synthesized with Cu catalyst. Mater Lett 61:177–181CrossRefGoogle Scholar
  57. 57.
    Parajuli O, Kumar N, Kipp D, Hahm JI (2007) Carbon nanotube cantilevers on self-aligned copper silicide nanobeams. Appl Phys Lett 90:1513CrossRefGoogle Scholar
  58. 58.
    Kumar N, Parajuli O, Hahm JI (2007) In situ integration of freestanding zinc oxide nanorods using copper silicide nanobeams. Appl Phys Lett 91:418Google Scholar
  59. 59.
    Iordanova S, Koleva I (2007) Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures. Spectrochim Acta B 62:344–356CrossRefGoogle Scholar
  60. 60.
    Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen QW (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568CrossRefGoogle Scholar
  61. 61.
    Cao X, Chuan XY, Masse RC, Huang DB, Li S, Cao GZ (2015) A three layer design with mesoporous silica encapsulated by carbon core and shell for high energy lithium ion battery anode. J Mater Chem A 3:22739–22749CrossRefGoogle Scholar
  62. 62.
    Wei LM, Hou ZY, Wei H (2017) Porous sandwiched graphene/silicon anodes for lithium storage. Electrochim Acta 229:445–451CrossRefGoogle Scholar
  63. 63.
    Polat BD, Keles O (2016) Functionally graded Si based thin films as negative electrodes for next generation lithium ion batteries. Electrochim Acta 187:293–299CrossRefGoogle Scholar
  64. 64.
    Kim SO, Manthiram A (2016) Low-cost carbon-coated Si-Cu3Si-Al2O3 nanocomposite anodes for high-performance lithium-ion batteries. J Power Sources 332:222–229CrossRefGoogle Scholar
  65. 65.
    Polat BD, Keles O (2015) Multi-layered Cu/Si nanorods and its use for lithium ion batteries. J Alloys Compd 622:418–425CrossRefGoogle Scholar
  66. 66.
    Shin HC, Corno JA, Gole JL, Liu M (2005) Porous silicon negative electrodes for rechargeable lithium batteries. J Power Sources 139:314–320CrossRefGoogle Scholar
  67. 67.
    Wang DS, Gao MX, Pan HG, Wang JH, Liu YF (2014) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J Power Sources 256:190–199CrossRefGoogle Scholar
  68. 68.
    Aboelfotoh MO, Krusin-Elbaum L (1991) Electrical transport in thin films of copper silicide. J Appl Phys 70:3382–3384CrossRefGoogle Scholar
  69. 69.
    He Y, Brown C, Lundgren CA, Zhao Y (2012) The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties. Nanotechnology 23:–365703Google Scholar
  70. 70.
    Wu QL, Shi B, Bareño J, Liu YZ, Maroni VA, Zhai DY, Dees DW, Lu WQ (2018) Investigations of Si thin films as anode of lithium-ion batteries. ACS Appl Mater Interfaces 10:3487–3494CrossRefGoogle Scholar
  71. 71.
    Cui Y, Zhao X, Guo R (2010) Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta 55:922–926CrossRefGoogle Scholar
  72. 72.
    Huang H, Gao S, Wu AM, Cheng K, Li XN, Gao XX, Zhao JJ, Dong XL, Cao GZ (2017) Fe3N constrained inside C nanocages as an anode for Li-ion batteries through post-synthesis nitridation. Nano Energy 31:74–83CrossRefGoogle Scholar
  73. 73.
    Gao S, Huang H, Wu AM, Yu JY, Gao J, Dong XL, Liu CJ, Cao GZ (2016) Formation of Sn-M (M = Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries. J Solid State Chem 242:127–135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jingshuang Liang
    • 1
  • Yulin Yang
    • 1
  • Jian Gao
    • 1
  • Lei Zhou
    • 1
  • Ming Gao
    • 1
  • Zhongyuan Zhang
    • 1
  • Wenfei Yang
    • 1
  • Muhammad Javid
    • 1
  • Youngguan Jung
    • 2
  • Xinglong Dong
    • 1
    Email author
  • Guozhong Cao
    • 3
  1. 1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringKumoh National Institute of TechnologyGumiSouth Korea
  3. 3.Department of Materials Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations