Selective soluble polymer–assisted electrochemical delamination of chemical vapor deposition graphene

  • Weier LuEmail author
  • Song Cheng
  • Meiju Yan
  • Yanwei Wang
  • Yang Xia
Original Paper


We have explored an optimized electrochemical delamination technique to transfer large area graphene grown by chemical vapor deposition (CVD) technique. A selective soluble polystyrene (PS) layer was added above the polymethyl-methacrylate (PMMA)/graphene/Cu stack. With the help of this PS film, the stack could provide enough strength to be picked up directly from electrolyte and rinsed in several deionized (DI) water baths to eliminate H2 bubbles and residual electrolysis ions. Besides, the PS layer was selective dissolved before the stack was transferred onto the target substrate leaving only the thin PMMA protective layer and graphene film scooped out onto the target substrate, which make sure that the thin and plastic film could fully stretch out on the substrate. As a result, the transferred graphene displayed high quality with less wrinkles, holes, and contaminants. This two-layer film–assisted electrochemical delamination technique is expected to play an important role in the application of two-dimensional materials in electrics, optoelectronics, and sensors.


Graphene transfer Electrochemical Polystyrene Polymethyl-methacrylate 



We thank Dayong Zhang for the help in the preparation and measurement of graphene back-gate field-effect transistor.

Funding information

This work was supported by the National Science Foundation of China (Nos. 61604175, 61427901).

Supplementary material

10008_2018_4172_MOESM1_ESM.docx (4.2 mb)
ESM 1 (DOCX 4287 kb)


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang DA, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  2. 2.
    Xia F, Farmer DB, Lin YM, Avouris P (2010) Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett 10(2):715–718CrossRefGoogle Scholar
  3. 3.
    Lin YM, Valdes-Garcia A, Han SJ, Farmer DB, Meric I, Sun Y, Wu Y, Dimitrakopoulos C, Grill A, Avouris P, Jenkins KA (2011) Wafer-scale graphene integrated circuit. Science 332(6035):1294–1297CrossRefGoogle Scholar
  4. 4.
    Andersson MA, Zhang Y, Stake J (2017) A 185–215-GHz subharmonic resistive graphene FET integrated mixer on silicon. IRE Trans Microwave Theory Tech 65(1):165–172CrossRefGoogle Scholar
  5. 5.
    Huang H, Ma L, Tiwary CS, Jiang Q, Yin K, Zhou W, Ajayan PM (2017) Worm-shape Pt nanocrystals grown on nitrogen-doped low-defect graphene sheets: highly efficient electrocatalysts for methanol oxidation reaction. Small 13(10):1603013CrossRefGoogle Scholar
  6. 6.
    Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7(1):13638CrossRefGoogle Scholar
  7. 7.
    Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3(12):eaao7233CrossRefGoogle Scholar
  8. 8.
    Xu S, Zhan J, Man B, Jiang S, Yue W, Gao S, Guo C, Liu H, Li Z, Wang J, Zhou Y (2017) Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat Commun 8:14902CrossRefGoogle Scholar
  9. 9.
    Huang Y, Sutter E, Shi NN, Zheng J, Yang T, Englund D, Gao HJ, Sutter P (2015) Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9(11):10612–10620CrossRefGoogle Scholar
  10. 10.
    Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenberg E (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8(3):203–207CrossRefGoogle Scholar
  11. 11.
    Mishra N, Boeckl J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: a review. Phys Status Solidi A 213(9):2277–2289CrossRefGoogle Scholar
  12. 12.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  13. 13.
    Guo L, Yin X, Wu W, Meng H (2017) Preparation of graphene via liquid-phase exfoliation with high gravity technology from edge-oxidized graphite. Colloids Surf A Physicochem Eng Asp 531:25–31CrossRefGoogle Scholar
  14. 14.
    Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 24:1243879Google Scholar
  15. 15.
    Lee JH, Lee EK, Joo WJ, Jang Y, Kim BS, Lim JY, Choi SH, Ahn SJ, Ahn JR, Park MH, Yang CW (2014) Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181):286–289CrossRefGoogle Scholar
  16. 16.
    Hsieh YP, Chen DR, Chiang WY, Chen KJ, Hofmann M (2017) Recrystallization of copper at a solid interface for improved CVD graphene growth. RSC Adv 7(7):3736–3740CrossRefGoogle Scholar
  17. 17.
    Chen Y, Gong XL, Gai JG (2016) Progress and challenges in transfer of large-area graphene films. Adv Sci 3:1500343CrossRefGoogle Scholar
  18. 18.
    Liang X, Sperling BA, Calizo I, Cheng G, Hacker CA, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X (2011) Toward clean and crackless transfer of graphene. ACS Nano 5(11):9144–9153CrossRefGoogle Scholar
  19. 19.
    Hallam T, Berner NC, Yim C, Duesberg GS (2014) Strain, bubbles, dirt, and folds: a study of graphene polymer-assisted transfer. Adv Mater Interfaces 1(6):1400115CrossRefGoogle Scholar
  20. 20.
    Zhan D, Sun L, Ni ZH, Liu L, Fan XF, Wang Y, Yu T, Lam YM, Huang W, Shen ZX (2010) FeCl3-based few-layer graphene intercalation compounds: single linear dispersion electronic band structure and strong charge transfer doping. Adv Funct Mater 20(20):3504–3509CrossRefGoogle Scholar
  21. 21.
    Lin WH, Chen TH, Chang JK, Taur JI, Lo YY, Lee WL, Chang CS, Su WB, Wu CI (2014) A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 8(2):1784–1791CrossRefGoogle Scholar
  22. 22.
    Wood JD, Doidge GP, Carrion EA, Koepke JC, Kaitz JA, Datye I, Behnam A, Hewaparakrama J, Aruin B, Chen Y, Dong H (2015) Annealing free, clean graphene transfer using alternative polymer scaffolds. Nanotechnol 26(5):055302CrossRefGoogle Scholar
  23. 23.
    Barin GB, Song Y, de Fátima Gimenez I, Souza Filho AG, Barreto LS, Kong J (2015) Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 84:82–90CrossRefGoogle Scholar
  24. 24.
    Kim HH, Lee SK, Lee SG, Lee E, Cho K (2016) Wetting-assisted crack-and wrinkle-free transfer of wafer-scale graphene onto arbitrary substrates over a wide range of surface energies. Adv Funct Mater 26(13):2070–2077CrossRefGoogle Scholar
  25. 25.
    Kim S, Shin S, Kim T, Du H, Song M, Lee C, Kim K, Cho S, Seo DH, Seo S (2016) Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon 98:352–357CrossRefGoogle Scholar
  26. 26.
    Van Ngoc H, Qian Y, Han SK, Kang DJ (2016) PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci Rep 6:33096CrossRefGoogle Scholar
  27. 27.
    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh KP (2011) Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5(12):9927–9933CrossRefGoogle Scholar
  28. 28.
    de la Rosa CJ, Sun J, Lindvall N, Cole MT, Nam Y, Löffler M, Olsson E, Teo KB, Yurgens A (2013) Frame assisted H2O electrolysis induced H2 bubbling transfer of large area graphene grown by chemical vapor deposition on cu. Appl Phys Lett 102(2):022101CrossRefGoogle Scholar
  29. 29.
    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM, Bao X (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3(1):699CrossRefGoogle Scholar
  30. 30.
    Yang X, Peng H, Xie Q, Zhou Y, Liu Z (2013) Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J Electroanal Chem 688:243–248CrossRefGoogle Scholar
  31. 31.
    Zhan Z, Sun J, Liu L, Wang E, Cao Y, Lindvall N, Skoblin G, Yurgens A (2015) Pore-free bubbling delamination of chemical vapor deposited graphene from copper foils. J Mater Chem C 3(33):8634–8641CrossRefGoogle Scholar
  32. 32.
    Cherian CT, Giustiniano F, Martin-Fernandez I, Andersen H, Balakrishnan J, Özyilmaz B (2015) ‘Bubble-Free’Electrochemical delamination of CVD graphene films. Small 11(2):189–194CrossRefGoogle Scholar
  33. 33.
    Wong CH, Pumera M (2016) Electrochemical delamination and chemical etching of chemical vapor deposition graphene: contrasting properties. J Phys Chem C 120(8):4682–4690CrossRefGoogle Scholar
  34. 34.
    Zhong H, Zhang Z, Xu H, Qiu C, Peng LM (2015) Comparison of mobility extraction methods based on field-effect measurements for graphene. AIP Adv 5(5):057136CrossRefGoogle Scholar
  35. 35.
    Guo W, Jing F, Xiao J, Zhou C, Lin Y, Wang S (2016) Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv Mater 28(16):3152–3158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of ScienceBeijing Jiaotong UniversityBeijingChina

Personalised recommendations