Journal of Solid State Electrochemistry

, Volume 23, Issue 2, pp 657–666 | Cite as

Improving lithium–sulfur battery performances by using conjugative porous polymer as the sulfur support: the case of N-containing porous aromatic framework 41

  • Qian Wang
  • Haiyan Gao
  • Qi Cui
  • Keke Wu
  • Feiyan Hao
  • Jianguo Yu
  • Yongnan ZhaoEmail author
  • Young-Uk Kwon
Original Paper


N-containing porous aromatic framework 41 (PAF-41) with hierarchical porous structure has been readily synthesized through AlCl3 catalyzed Scholl reaction by using triphenylamine as the monomer. The extended skeleton of PAF-41 is constructed by N-bridged biphenyl groups to generate a consecutive conjugative electronic structure. The hierarchical porous skeleton and the presence of N atoms effectively confine the electroactive species by synergistic physisorption and chemisorption to alleviate the shuttle effect that is induced by the soluble polysulfides. These features render the sulfur impregnated PAF-41 (SPAF-41) improved lithium–sulfur battery performances, especially the cycling stability. SPAF-41 composite cathode with high sulfur loading of 72 wt% exhibits enhanced rate capability and excellent cycling performance. The cell delivers a high capacity of 725.8 mAh g−1 at 0.5 °C in the first cycle and sustains a reversible capacity of 491.4 mAh g−1 after 500 charge–discharge cycles. A low decay rate of 0.06% per cycle is achieved. The well conductive PAF-41 support bestows the cell high Coulombic efficiency of 97.36%.


N-containing Porous aromatic frameworks Lithium–sulfur batteries Cycling stability 


Funding information

This research is financially supported by Natural Science Foundations of China (No. 21271138 and 21703152) and Natural Science Foundations of Tianjin (No. 17JCQNJC06100 and 17JCTPJC47300).

Supplementary material

10008_2018_4166_MOESM1_ESM.docx (234 kb)
ESM 1 (DOCX 234 kb)


  1. 1.
    Fang RP, Zhao SY, Hou PX, Cheng M, Wang SG, Cheng HM, Liu C, Li F (2016) 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv Mater 28(17):3374–3382CrossRefGoogle Scholar
  2. 2.
    Manthiram A, Chung SH, Zu CX (2015) Lithium–sulfur batteries: progress and prospects. Adv Mater 27(12):1980–2006CrossRefGoogle Scholar
  3. 3.
    Zhou GM, Zhao YB, Zu CX, Manthiram A (2015) Free-standing TiO2 nanowire-embedded graphene hybrid membrane for advanced Li/dissolved polysulfide batteries. Nano Energy 12:240–249CrossRefGoogle Scholar
  4. 4.
    Li MY, Carter R, Douglas A, Oakes L, Pint CL (2017) Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal capacity lithium–sulfur battery composite cathodes. ACS Nano 11(5):4877–4884CrossRefGoogle Scholar
  5. 5.
    Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF (2015) A highly efficient polysulfide mediator for lithium–sulfur batteries. Nat Commun 6(1):5682CrossRefGoogle Scholar
  6. 6.
    Xu N, Qian T, Liu X, Liu J, Chen Y, Yan C (2017) Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett 17(1):538–543CrossRefGoogle Scholar
  7. 7.
    Li Z, Wu HB, Lou XW (2016) Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium-sulfur batteries. Energy Environ Sci 9(10):3061–3070CrossRefGoogle Scholar
  8. 8.
    Chung SH, Manthiram A (2014) Eggshell membrane-derived polysulfide absorbents for highly stable and reversible lithium–sulfur cells. ACS Sustain Chem Eng 2(10):2248–2252CrossRefGoogle Scholar
  9. 9.
    Yin YX, Xin S, Guo YG, Wan LJ (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52(50):13186–13200CrossRefGoogle Scholar
  10. 10.
    Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries—ten critical questions. Chem Eur J 22(22):7324–7351CrossRefGoogle Scholar
  11. 11.
    She ZW, Sun YM, Zhang QF, Cui Y (2016) Designing high-energy lithium-sulfur batteries. Chem Soc Rev 45:5605–5634CrossRefGoogle Scholar
  12. 12.
    Singhal R, Chung SH, Manthiram A, Kalra V (2015) A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 3(8):4530–4538CrossRefGoogle Scholar
  13. 13.
    Chung SH, Manthiram A (2014) A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries. Chem Commun 50(32):4184–4187CrossRefGoogle Scholar
  14. 14.
    Pei F, An TH, Zang J, Zhao XJ, Fang XL, Zheng MS, Dong QF, Zheng NF (2016) From hollow carbon spheres to N–doped hollow porous carbon bowls: rational design of hollow carbon host for Li–S batteries. Adv Energy Mater 6(8):1502539CrossRefGoogle Scholar
  15. 15.
    Xue MZ, Chen C, Ren ZW, Tan Y, Li B, Zhang CM (2017) A novel mangosteen peels derived hierarchical porous carbon for lithium sulfur battery. Mater Lett 209:594–597CrossRefGoogle Scholar
  16. 16.
    You XL, Liu LJ, Zhang MY, Walle MD, Li YJ, Liu YN (2018) Novel biomass derived hierarchical porous carbon for lithium sulfur batteries. Mater Lett 217:167–170CrossRefGoogle Scholar
  17. 17.
    Zhong Y, Xia XH, Deng SJ, Zhan JY, Fang RY, Xia Y, Wang XL, Zhang Q, Tu JP (2018) Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv Energy Mater 8(1):1701110CrossRefGoogle Scholar
  18. 18.
    Li XY, Fu NQ, Zou JZ, Zeng XR, Chen YM, Zhou LM, Huang HT (2017) Sulfur-impregnated N-doped hollow carbon nanofibers as cathode for lithium-sulfur batteries. Mater Lett 209:505–508CrossRefGoogle Scholar
  19. 19.
    Li Z, Zhang JT, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed 54(44):12886–12890CrossRefGoogle Scholar
  20. 20.
    Zhang XQ, He B, Li WC, Lu AH (2018) Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res 11(3):1238–1246CrossRefGoogle Scholar
  21. 21.
    Liu Q, Zhang JH, He SA, Zou RJ, Xu CT, Cui Z, Huang XJ, Guan GQ, Zhang WL, Xu KB, Hu JQ (2018) Stabilizing lithium–sulfur batteries through control of sulfur aggregation and polysulfide dissolution. Small 14(20):1703816CrossRefGoogle Scholar
  22. 22.
    Liang X, Liu Y, Wen ZY, Huang LZ, Wang XY, Zhang H (2011) A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium–sulfur batteries. J Power Sources 196(16):6951–6955CrossRefGoogle Scholar
  23. 23.
    Zeng SB, Li LG, Yu JP, Wang N, Chen SW (2018) Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries. Electrochim Acta 263:53–59CrossRefGoogle Scholar
  24. 24.
    Kaiser MR, Ma ZH, Wang XW, Han FD, Gao T, Fan XL, Wang JZ, Liu HK, Dou SX, Wang CS (2017) Reverse microemulsion synthesis of sulfur/graphene composite for lithium/sulfur batteries. ACS Nano 11(9):9048–9056CrossRefGoogle Scholar
  25. 25.
    Cao J, Chen C, Zhao Q, Zhang N, Lu QQ, Wang XY, Niu ZQ, Chen J (2016) A flexible nanostructured paper of a reduced graphene oxide–sulfur composite for high–performance lithium–sulfur batteries with unconventional configurations. Adv Mater 28(43):9629–9636CrossRefGoogle Scholar
  26. 26.
    Chen K, Cao J, Lu QQ, Wang QR, Yao MJ, Han MM, Niu ZQ, Chen J (2018) Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res 11(3):1345–1357CrossRefGoogle Scholar
  27. 27.
    Chen YM, Li XY, Park KS, Hong JH, Song J, Zhou LM, Mai YW, Huang HT, Goodenough JB (2014) Sulfur encapsulated in porous hollow CNTs@ CNFs for high-performance lithium–sulfur batteries. J Mater Chem A 2(26):10126–10130CrossRefGoogle Scholar
  28. 28.
    Yuan JJ, Zheng XK, Jiang L, Yao DC, He GY, Chen HQ, Che JF (2018) CNT-intercalated rGO/sulfur laminated structure for high-rate and long-life lithium-sulfur batteries. Mater Lett 219:68–71CrossRefGoogle Scholar
  29. 29.
    Zhang H, Gao QM, Qian WW, Xiao H, Li ZY, Ma L, Tian XH (2018) Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as high performance Li-S battery cathode. ACS Appl Mater Interfaces 10(22):18726–18733CrossRefGoogle Scholar
  30. 30.
    Zhang YZ, Zhang Z, Liu S, Li GR, Gao XP (2018) Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium–sulfur battery. ACS Appl Mater Interfaces 10(10):8749–8757CrossRefGoogle Scholar
  31. 31.
    Wu DC, Xu F, Sun B, Fu RW, He HK, Matyjaszewski K (2012) Design and preparation of porous polymers. Chem Rev 112(7):3959–4015CrossRefGoogle Scholar
  32. 32.
    Xu F, Yang SH, Jiang GS, Ye Q, Wei BQ, Wang HQ (2017) Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium–sulfur batteries. ACS Appl Mater Interfaces 9(43):37731–37738CrossRefGoogle Scholar
  33. 33.
    Ghazi ZA, Zhu LY, Wang H, Naeem A, Khattak AM, Lang B, Khan NA, Wei ZX, Li LS, Tang ZY (2016) Efficient polysulfide chemisorption in covalent organic frameworks for high–performance lithium–sulfur batteries. Adv Energy Mater 6(24):1601250CrossRefGoogle Scholar
  34. 34.
    Guo BK, Ben T, Bi ZH, Veith GM, Sun XG, Qiu SL, Dai S (2013) Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries. Chem Commun 49(43):4905–4907CrossRefGoogle Scholar
  35. 35.
    Zeng JH, Wang YF, Gou SQ, Zhang LP, Chen Y, Jiang JX, Shi F (2017) Sulfur in hyper-cross-linked porous polymer as cathode in lithium–sulfur batteries with enhanced electrochemical properties. ACS Appl Mater Interfaces 9(40):34783–34792CrossRefGoogle Scholar
  36. 36.
    Zhou BL, Hu X, Zeng G, Li SW, Wen ZH, Chen L (2017) Bottom-up construction of porous organic frameworks with built-in TEMPO as a cathode for lithium–sulfur batteries. ChemSusChem 10(14):2955–2961CrossRefGoogle Scholar
  37. 37.
    Zhai WL, Tu WL, Liu Y, Gao HY, Yu JG, Zhao YN, Li GD (2016) Excellent performance of lithium-sulfur batteries with carbonized porous aromatic framework nanobeads as support. Electrochim Acta 219:143–151CrossRefGoogle Scholar
  38. 38.
    Yuan Y, Yang YJ, Ma XJ, Meng QH, Wang LL, Zhao S, Zhu GS (2018) Molecularly imprinted porous aromatic frameworks and their composite components for selective extraction of uranium ions. Adv Mater 30(12):1706507CrossRefGoogle Scholar
  39. 39.
    Yuan RR, Gu Y, Ren H, Liu J, Zhu GS (2017) Porous aromatic framework as an efficient metal–free electro–catalyst for non–enzymatic H2O2 sensing. Chem Eur J 23(40):9467–9471CrossRefGoogle Scholar
  40. 40.
    Rangel-Rangel E, Verde-Sesto E, Rasero-Almansa AM, Iglesias M, Sanchez F (2016) Porous aromatic frameworks (PAFs) as efficient supports for N-heterocyclic carbene catalysts. Catal Sci Technol 6(15):6037–6045CrossRefGoogle Scholar
  41. 41.
    Zhao HY, Jin Z, Su HM, Zhang JL, Yao XD, Zhao HJ, Zhu GS (2013) Target synthesis of a novel porous aromatic framework and its highly selective separation of CO2/CH4. Chem Commun 49(27):2780–2782CrossRefGoogle Scholar
  42. 42.
    Xiang ZH, Wang D, Xue YH, Dai LM, Chen JF, Cao DP (2015) PAF-derived nitrogen-doped 3D carbon materials for efficient energy conversion and storage. Sci Rep 5(1):8307CrossRefGoogle Scholar
  43. 43.
    Bao WZ, Liu L, Wang CY, Choi S, Wang D, Wang GX (2018) Facile synthesis of crumpled nitrogen–doped MXene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv Energy Mater 8(13):1702485CrossRefGoogle Scholar
  44. 44.
    Zhong ME, Guan JD, Feng QJ, Wu XW, Xiao ZB, Zhang W, Tong S, Zhou N, Gong DX (2018) Accelerated polysulfide redox kinetics revealed by ternary sandwich-type S@ Co/N-doped carbon nanosheet for high-performance lithium-sulfur batteries. Carbon 128:86–96CrossRefGoogle Scholar
  45. 45.
    Lu Q, Zhong YJ, Zhou W, Liao KM, Shao ZP (2018) Dodecylamine–induced synthesis of a nitrogen–doped carbon comb for advanced lithium–sulfur battery cathodes. Adv Mater Interfaces 5(9):1701659CrossRefGoogle Scholar
  46. 46.
    Li LN, Ren H, Yuan Y, Yu GL, Zhu GS (2014) Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J Mater Chem A 2(29):11091–11098CrossRefGoogle Scholar
  47. 47.
    Song XJ, Zhu WC, Yan Y, Gao HC, Gao WX, Zhang WX, Jia MJ (2017) Triphenylamine-based porous organic polymers: synthesis and application for supporting phosphomolybdate to fabricate efficient olefin oxidation catalysts. Microporous Mesoporous Mater 242:9–17CrossRefGoogle Scholar
  48. 48.
    Wang Y, Ma RY, Xiao RB, Hao L, Wu QH, Wang C, Wang Z (2018) A hyper-cross linked polymer as an adsorbent for the extraction of chlorophenols. Microchim Acta 185(2):108CrossRefGoogle Scholar
  49. 49.
    Yang XL, Qian XY, Jin LN, Zhao D, Wang SW, Rao DW, Yao SS, Shen XQ, Zhou YY, Xi XM (2016) Mesoporous TiO2 nanosheet with a large amount of exposed {001} facets as sulfur host for high-performance lithium-sulfur batteries. J Solid State Electrochem 20(8):2161–2168CrossRefGoogle Scholar
  50. 50.
    Zhang ZA, Zhang ZY, Li J, Lai YQ (2015) Polydopamine-coated separator for high-performance lithium-sulfur batteries. J Solid State Electrochem 19(6):1709–1715CrossRefGoogle Scholar
  51. 51.
    Yang H, Zhang X, Guo JL, Zhu WL, Zhao SP, Wang F, Fan QY, Xiao HY, Zhang FX (2018) A N, S-codoped hierarchical carbon Foam@ Porous carbon composite as freestanding cathode for high-performance lithium-sulfur batteries. J Alloys Compd 768:495–502CrossRefGoogle Scholar
  52. 52.
    Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE (2011) A study of the electrochemical processes in lithium–sulphur cells by impedance spectroscopy. J Power Sources 196(3):1478–1482CrossRefGoogle Scholar
  53. 53.
    Li XL, Wang YY, Xu CS, Pan LS (2017) Mesoporous carbon/sulfur composite with N-doping and tunable pore size for high-performance Li-S batteries. J Solid State Electrochem 21(4):1101–1109CrossRefGoogle Scholar
  54. 54.
    Hou TZ, Chen X, Peng HJ, Huang JQ, Li BQ, Zhang Q, Li B (2016) Design principles for heteroatom–doped nanocarbon to achieve strong anchoring of polysulfides for lithium–sulfur batteries. Small 12(24):3283–3291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qian Wang
    • 1
  • Haiyan Gao
    • 1
  • Qi Cui
    • 1
  • Keke Wu
    • 1
  • Feiyan Hao
    • 1
  • Jianguo Yu
    • 1
  • Yongnan Zhao
    • 1
    Email author
  • Young-Uk Kwon
    • 1
    • 2
  1. 1.Tianjin Key Laboratory of Advanced Fibers and Energy Storage Technology, School of Material Science and EngineeringTianjin Polytechnic UniversityTianjinChina
  2. 2.Department of ChemistrySungkyunkwan UniversitySuwonKorea

Personalised recommendations