Skip to main content
Log in

Effect of sodium dodecyl sulfate and carbon particles/nanotubes on electrodeposition of polyaniline from oxalic acid solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of sodium dodecyl sulfate and carbon particles/nanotubes on the electropolymerization of aniline from oxalic acid solution onto a graphite electrode was investigated. The morphology and chemical structure of the as-synthesized polyaniline films were studied by means of SEM, XPS, NEXAFS, FTIR, and Raman spectroscopy. The electrochemical characteristics of the films were also analyzed in sulfuric acid solution. It has been shown that in the presence of sodium dodecyl sulfate, the polymerization rate increases significantly. In the synthesized polyaniline films, all imine groups and most of amine groups are protonated, with dodecyl sulfate ions being intercalated in the polymer. In the presence of sodium dodecyl sulfate, plate-like polyaniline forms large agglomerates with an extended surface and high electrochemical activity. It has been shown that the electrodeposition carried out in the presence of sodium dodecyl sulfate and suspended activated graphite particles or carbon nanotubes favors the formation of composite coatings with high specific capacitance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gospodinova N, Terlemezyan L (1998) Conducting polymers prepared by oxidative polymerization: polyaniline. Prog Polym Sci 23:1443–1484

    Article  CAS  Google Scholar 

  2. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  3. Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms structural aspects, properties and applications. Synthetic Met 177:1–47

    Article  Google Scholar 

  4. Ćirić-Marjanović G (2013) Recent advances in polyaniline composites with metals, metalloids and nonmetals. Synthetic Met 170:31–56

    Article  Google Scholar 

  5. Tallman DE, Spinks G, Dominis A, Wallace GG (2002) Electroactive conducting polymers for corrosion control. Part 1. General introduction and a review of non-ferrous metals. J Solid State Electrochem 6:73–84

    Article  CAS  Google Scholar 

  6. Spinks G, Dominis A, Wallace GG, Tallman DE (2002) Electroactive conducting polymers for corrosion control. Part 2. Ferrous metals. J Solid State Electrochem 6:85–100

    Article  CAS  Google Scholar 

  7. Ates M, Sezai Sarac A (2009) Conducting polymer coated carbon surfaces and biosensor applications. Prog Org Coat 66:337–358

    Article  CAS  Google Scholar 

  8. Hino T, Namiki T, Kuramoto N (2006) Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate and several water soluble polymers. Synthetic Met 156:1327–1332

    Article  CAS  Google Scholar 

  9. Stejskal J, Omastová M, Fedorova S, Prokeš J, Trchová M (2003) Polyaniline and polypyrrole prepared in the presence of surfactants: a comparative conductivity study. Polymer 44:1353–1358

    Article  CAS  Google Scholar 

  10. Kuramoto N, Geniès EM (1995) Micellar chemical polymerization of aniline. Synthetic Met 68:191–194

    Article  CAS  Google Scholar 

  11. Kim B-J, Oh S-G, Han M-G, Im S-S (2000) Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium. Langmuir 16:5841–5845

  12. Leng W, Zhou S, Gu G, Wu L (2012) Wettability switching of SDS-doped polyaniline from hydrophobic to hydrophilic induced by alkaline/reduction reactions. J Colloid Interf Sci 369:411–418

    Article  CAS  Google Scholar 

  13. Leng W, Zhou S, You B, Wu L (2012) Controllable synthesis of aniline oligomers into uniform, dispersed cross and needle morphologies. J Colloid Interf Sci 374:331–338

    Article  CAS  Google Scholar 

  14. Rahmanifar MS, Mousavi MF, Shamsipur M, Riahi S (2006) A study on the influence of anionic surfactants on electrochemical degradation of polyaniline. Polym Degrad Stabil 91:3463–3468

    Article  CAS  Google Scholar 

  15. Cai L-T, Yao S-B, Zhou S-M (1997) Surfactant effects on the polyaniline film. Synthetic Met 88:209–212

    Article  CAS  Google Scholar 

  16. Michaelson JC, McEvoy AJ, Kuramoto N (1992) Morphology and growth rate of polyaniline films modified by surfactants and polyelectrolytes. React Polym 17:197–206

    Article  CAS  Google Scholar 

  17. De Albuquerque Maranhão SL, Torresi RM (1999) Quartz crystal microbalance study of charge compensation process in polyaniline films doped with surfactant anions. Electrochim Acta 44:1879–1885

    Article  Google Scholar 

  18. Kanungo M, Kumar A, Contractor AQ (2002) Studies on electropolymerization of aniline in the presence of sodium dodecylsulfate and its application in sensing urea. J Electroanal Chem 528:46–56

    Article  CAS  Google Scholar 

  19. Prathap MUA, Thakur B, Sawant SN, Srivastava R (2012) Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. Colloid Surface B 89:108–116

    Article  Google Scholar 

  20. Herrasti P, Recio FJ, Ocón P, Fatás E (2005) Effect of the polymer layers and bilayers on the corrosion behaviour of mild steel: comparison with polymers containing Zn microparticles. Prog Org Coat 54:285–291

    Article  CAS  Google Scholar 

  21. Chang G, Luo Y, Liao F, Lu W, Sun X (2011) Polyacetylene nanoparticles-based preparation of polyaniline nanofibers. J Nanopart Res 13:471–477

  22. Vaidya SG, Rastogi S, Aguirre A (2010) Surfactant assisted processable organic nanocomposite dispersions of polyaniline–single wall carbon nanotubes. Synthetic Met 160:134–138

    Article  CAS  Google Scholar 

  23. Oueiny C, Berlioz S, Perrin F-X (2014) Carbon nanotube–polyaniline composites. Prog Polym Sci 39:707–748

    Article  CAS  Google Scholar 

  24. De Albuquerque Maranhão SL, Torresi RM (1999) Anion and solvent exchange as a function of the redox states in polyaniline films. J Electrocem Soc 146:4179–4182

    Article  Google Scholar 

  25. Orata D, Buttry DA (1987) Determination of ion population and solvent content as function of redox state and pH in polyaniline. J Am Chem Soc 109:3574–3581

    Article  CAS  Google Scholar 

  26. Horanyi G, Inzelt G (1988) Anion-involvement in electrochemical transformation of polyaniline. A radiotracer study. Electrochim Acta 33:947–952

    Article  CAS  Google Scholar 

  27. Сórdova R, Del Valle MA, Arratia A, Gómez H, Schrebler R (1994) Effect of anions on the nucleation and growth mechanism of polyaniline. J Electroanal Chem 377:75–83

    Article  Google Scholar 

  28. Duić L, Mandić Z (1992) Counter-ion and pH effect on the electrochemical synthesis of polyaniline. J Electroanal Chem 335:207–221

    Article  Google Scholar 

  29. Erdem E, Saçak M, Karakişla M (1996) Synthesis and properties of oxalic acid-doped polyaniline. Polym Int 39:153–159

    Article  CAS  Google Scholar 

  30. Makarova TL, Zakharchuk I, Geydt P, Lahderanta E, Komlev AA, Zyrianova AA, Lyubchyk A, Kanygin MA, Sedelnikova OV, Kurenya AG, Bulusheva LG, Okotrub AV (2016) Assessing carbon nanotube arrangement in polystyrene matrix by magnetic susceptibility measurements. Carbon 96:1077–1083

    Article  CAS  Google Scholar 

  31. Gorovikov SA, Follath R, Molodtsov SL, Kaindl G (2001) Optimization of the optical design of the Russian–German soft-X-ray beamline at BESSY II. Nucl Instrum Meth A 467-468:565–568

    Article  CAS  Google Scholar 

  32. Watts B, Thomsen L, Dastoor PC (2006) Methods in carbon K-edge NEXAFS: experiment and analysis. J Electron Spectrosc Relat Phenom 151:105–120

    Article  CAS  Google Scholar 

  33. Coffey T, Urquhart SG, Ade H (2002) Characterization of the effects of soft X-ray irradiation on polymers. J Electron Spectrosc Relat Phenom 122:65–78

    Article  CAS  Google Scholar 

  34. Beamson G, Briggs D (1992) High resolution XPS of organic polymers. The Scienta ESCA300 database. John Wiley & Sons, New York

    Google Scholar 

  35. Ates M, Akif Serin M, Ekmen I, Ertas YN (2015) Supercapacitor behaviors of polyaniline/CuO, polypyrrole/CuO and PEDOT/CuO nanocomposites. Polym Bull 72:2573–2589

    Article  CAS  Google Scholar 

  36. Yang H, Bard AJ (1992) The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J Electroanal Chem 339:423–449

    Article  CAS  Google Scholar 

  37. Duić L, Mandić Z, Kovać S (1995) Polymer-dimer distribution in the electrochemical synthesis of polyaniline. Electrochim Acta 40:1681–1688

    Article  Google Scholar 

  38. Wei X-L, Fahlman M, Epstein AJ (1999) XPS study of highly sulfonated polyaniline. Macromolecules 32:3114–3117

    Article  CAS  Google Scholar 

  39. Zeng X-R, Ko T-M (1998) Structures and properties of chemically reduced polyanilines. Polymer 39:1187–1195

    Article  CAS  Google Scholar 

  40. Neoh KG, Kang ET, Tan KL (1991) Structural study of polyaniline films in reprotonation/deprotonation cycles. J Phys Chem 95:10151–10156

    Article  CAS  Google Scholar 

  41. Hennig C, Hallmeier KH, Szargan R (1998) XANES investigation of chemical states of nitrogen in polyaniline. Synthetic Met 92:161–166

    Article  CAS  Google Scholar 

  42. Magnuson M, Guo J-H, Butorin SM, Agui A, Såthe C, Nordgren J, Monkman AP (1999) The electronic structure of polyaniline and doped phases studied by soft X-ray absorption and emission spectroscopies. J Chem Phys 111:4756–4761

    Article  CAS  Google Scholar 

  43. Guay D, Stewart-Ornstein J, Zhang X, Hitchcock AP (2005) In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy. Anal Chem 77:3479–3487

    Article  CAS  Google Scholar 

  44. Yau S, Lee YH, Chang CZ, Fan LJ, Yang YW, Dow WP (2009) Structures of aniline and polyaniline molecules adsorbed on Au (111) electrode: as probed by in situ STM, ex situ XPS, and NEXAFS. J Phys Chem C 113:13758–13764

    Article  CAS  Google Scholar 

  45. Lee YH, Chang CZ, Yau SL, Fan LJ, Yang YW, Ou Yang LY, Itaya K (2009) Conformations of polyaniline molecules adsorbed on Au(111) probed by in situ STM and ex situ XPS and NEXAFS. J Am Chem Soc 131:6468–6474

    Article  CAS  Google Scholar 

  46. Fu J, Urquhart SG (2005) Linear dichroism in the X-ray absorption spectra of linear n-alkanes. J Phys Chem A 109:11724–11732

    Article  CAS  Google Scholar 

  47. Hähner G, Zwahlen M, Caseri W (2005) Solvent dependence of the molecular order in ion-exchanged self-assembled dialkylammonium monolayers on mica studied with soft X-ray absorption. J Colloid Interf Sci 291:45–52

    Article  Google Scholar 

  48. Jalilehvand F (2006) Sulfur: not a “silent” element any more. Chem Soc Rev 35:1256–1268

    Article  CAS  Google Scholar 

  49. Adams PN, Laughlin PJ, Monkman AP, Kenwright AM (1996) Low temperature synthesis of high molecular weight polyaniline. Polymer 37:3411–3417

    Article  CAS  Google Scholar 

  50. Colomban P, Folch S, Gruger A (1999) Vibrational study of short-range order and structure of polyaniline bases and salts. Macromolecules 32:3080–3092

    Article  CAS  Google Scholar 

  51. Trchová M, Morávková Z, Bláha M, Stejskal J (2014) Raman spectroscopy of polyaniline and oligoaniline thin flms. Electrochim Acta 122:28–38

    Article  Google Scholar 

  52. Ćirić-Marjanović G, Trchová M, Stejskal J (2008) The chemical oxidative polymerization of aniline in water: Raman spectroscopy. J Raman Spectrosc 39:1375–1387

    Article  Google Scholar 

  53. Louran G, Lapkowski M, Quillard S, Pron A, Buisson JP, Lefrant S (1996) Vibrational properties of polyaniline—isotope effect. J Phys Chem 100:6998–7006

    Article  Google Scholar 

  54. Quillard S, Louarn G, Lefrant S, Macdiarmid AG (1994) Vibrational analysis of polyaniline: a comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys Rev B 50:12496–12508

    Article  CAS  Google Scholar 

  55. D’Antonio MC, Wladimirsky A, Palacios D, Coggiola L, González-Baró AC, Baran EJ, Mercader RC (2009) Spectroscopic investigations of iron(II) and iron(III) oxalates. J Braz Chem Soc 20:445–450

    Article  Google Scholar 

  56. Mayo DW, Miller FA, Hannah RW (2003) Course notes on the interpretation of infrared and Raman spectra. John Wiley & Sons Inc, Hoboken

  57. Kellenberger A, Dmitrieva E, Dunsch L (2011) The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ ATR-FTIR spectroelectrochemical study. Phys Chem Chem Phys 13:3411–3420

    Article  CAS  Google Scholar 

  58. Chatterjee S, Salaün F, Campagne C (2014) The influence of 1-butanol and trisodium citrate ion on morphology and chemical properties of chitosan-based microcapsules during rigidification by alkali treatment. Mar Drugs 12:5801–5816

    Article  CAS  Google Scholar 

  59. Salvatierra RV, Oliveira MM, Zarbin AJG (2010) One-pot synthesis and processing of transparent, conducting, and free standing carbon nanotubes/polyaniline composite films. Chem Mater 22:5222–5234

    Article  CAS  Google Scholar 

  60. Šeděnková I, Trchová M, Stejskal J (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water—FTIR and Raman spectroscopic studies. Polym Degrad Stabil 93:2147–2157

    Article  Google Scholar 

  61. Nakanishi K (1962) Infrared absorption spectroscopy. Holden-Day Inc. San Francisco & Nankodo Company Limited, Tokyo

    Google Scholar 

  62. NIST Chemistry WebBook (2011) National Institute of Standards and Technology, Gaithersburg. http:webbook.nist.gov/chemistry. Accessed 1 June 2017

  63. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  CAS  Google Scholar 

  64. Osswald S, Havel M, Gogotsi Y (2007) Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy. J Raman Spectrosc 38:728–736

    Article  CAS  Google Scholar 

  65. Bokobza L, Bruneel J-L, Couzi M (2015) Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. C 1:77–94

    Google Scholar 

  66. Wu M, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15:2297–2303

    Article  CAS  Google Scholar 

  67. Huang J-E, Li X-H, Xu J-C, Li H-L (2003) Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon 41:2731–2736

  68. Janot R, Guérard D (2002) Ball-milling: the behavior of graphite as a function of dispersal media. Carbon 40:2887–2896

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. S.F. Lomayeva (Physical-Technical Institute, UB RAS, Izhevsk, Russia) for ball milling of graphite, Dr. K.G Mikheev (Institute of Mechanics, UB RAS, Izhevsk, Russia) for measuring Raman spectra and Dr. D.A. Smirnov (Institut für Festkörperphysik, Technische Universität Dresden) for his technical assistance during our beamtime.

Funding

This work was supported by FASO of Russia within the state assignment No. АААА-А17-117022250038-7, the Russian Foundation for Basic Research (projects No. 16-33-00190 and No. 16-43-180228), and bilateral Program “Russian-German Laboratory at BESSY II”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Syugaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syugaev, A.V., Lyalina, N.V., Maratkanova, A.N. et al. Effect of sodium dodecyl sulfate and carbon particles/nanotubes on electrodeposition of polyaniline from oxalic acid solution. J Solid State Electrochem 22, 931–942 (2018). https://doi.org/10.1007/s10008-017-3822-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3822-x

Keywords

Navigation