Advertisement

Journal of Solid State Electrochemistry

, Volume 21, Issue 12, pp 3599–3610 | Cite as

The influence of the graphite structure changes on the high-energy electrochemical capacitor performance

  • I. AcznikEmail author
  • K. Lota
Original Paper
  • 253 Downloads

Abstract

Combining the advantages of lithium-ion batteries and supercapacitors is an interesting solution to high-energy devices with the maintenance of high power output. Herein we report on the performance of the lithium-ion capacitors (LICs), exploiting graphene-based materials and activated carbon as negative and positive electrodes, respectively. The electrochemical properties of pre-lithiated reduced graphite oxides (reduced thermally—TRGO, or chemically—CRGO) and pristine graphite are compared based on measurements conducted in two- and three-electrode cells. Chemically reduced graphite oxide (CRGO) displays excellent performance at current densities up to 8 A g−1. The assembled hybrid capacitor delivers the energy density around 80 Wh kg−1 along a wide range of power densities. Promising results show that even at power value of 24.8 kW kg−1, the device retains energy density over 35 Wh kg−1. The cycle performance also shows good energy retention comparing with a graphite anode. However, better energy retention is observable for the TRGO-negative electrode material. After the 2000 of cycles, the AC/TRGO(Li) system loaded with the current density of 1 A g−1 provides energy of 58 Wh kg−1.

Graphical abstract

Keywords

Energy storage Lithium-ion capacitor Graphite Structure modification Graphene 

Notes

Acknowledgements

Dr. Krzysztof Fic is acknowledged for his contribution to this manuscript. Financial support from the National Science Centre of Poland (grant number UMO-2013/09/D/ST5/03886) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Amatucci GG, Badway F, Du Pasquier A, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148(8):A930–A939CrossRefGoogle Scholar
  2. 2.
    Cericola D, Kötz R (2012) Hybridization of rechargeable batteries and electrochemical capacitors: principle and limits. Electrochim Acta 72:1–17CrossRefGoogle Scholar
  3. 3.
    Cao WJ, Shih J, Zheng JP, Doung T (2014) Development and characterization of Li-ion capacitor pouch cells. J Power Sources 257:388–393CrossRefGoogle Scholar
  4. 4.
    Sivakkumar SR, Pandolfo AG (2014) Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors. J Appl Electrochem 44:105–113CrossRefGoogle Scholar
  5. 5.
    Sun X, Zhang X, Zhang H, Xu N, Wang K, Ma Y (2014) High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes. J Power Sources 270:318–325CrossRefGoogle Scholar
  6. 6.
    Dsoke S, Fuchs B, Gucciardi E, Wohlfahrt-Mehrens M (2015) The importance of the electrode mass ratio in a Li-ion capacitor based on activated carbon and Li4Ti5O12. J Power Sources 282:385–393CrossRefGoogle Scholar
  7. 7.
    Zhang J, Shi Z, Wang J, Shi J (2015) Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance. J Electroanal Chem 747:20–28CrossRefGoogle Scholar
  8. 8.
    Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 17(1):34–37Google Scholar
  9. 9.
    Ogihara N, Igarashi Y, Kamakura A, Naoi K, Kusachi Y, Utsugi K (2006) Disordered carbon negative electrode for electrochemical capacitors and high-rate batteries. Electrochim Acta 52(4):1713–1720CrossRefGoogle Scholar
  10. 10.
    Aida T, Murayama I, Yamada K, Morita M (2007) High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode. J Power Sources 166(2):462–470CrossRefGoogle Scholar
  11. 11.
    Woo S-W, Dokko K, Nakano H, Kanamura K (2007) Bimodal porous carbon as a negative electrode material for lithium-ion capacitors. Electrochemistry 75(8):635–640CrossRefGoogle Scholar
  12. 12.
    Khomenko V, Raymundo-Piñero E, Béguin F (2008) High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 177:643–651CrossRefGoogle Scholar
  13. 13.
    Sivakkumar SR, Nerkar JY, Pandolfo AG (2010) Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta 55(9):3330–3335CrossRefGoogle Scholar
  14. 14.
    Sivakkumar SR, Pandolfo AG (2012) Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta 65:280–287CrossRefGoogle Scholar
  15. 15.
    Cao WJ, Zheng JP (2012) Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes. J Power Sources 213:180–185CrossRefGoogle Scholar
  16. 16.
    Cao W, Li Y, Fitch B, Shih J, Doung T, Zheng J (2014) Strategies to optimize lithium-ion supercapacitors achieving high-performance: cathode configurations, lithium loadings on anode, and types of separator. J Power Sources 268:841–847CrossRefGoogle Scholar
  17. 17.
    Gourdin G, Smith PH, Jiang T, Tran TN, Qu D (2013) Lithiation of amorphous carbon negative electrode for Li ion capacitor. J Electroanal Chem 688:103–112CrossRefGoogle Scholar
  18. 18.
    Schroeder M, Winter M, Passerini S, Balducci A (2013) On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material. J Power Sources 238:388–394CrossRefGoogle Scholar
  19. 19.
    Schroeder M, Menne S, Ségalini J, Saurel D, Casas-Cabanas M, Passerini S, Winter M, Balducci A (2014) Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors. J Power Sources 266:250–258CrossRefGoogle Scholar
  20. 20.
    Yu X, Zhan C, Lv R, Bai Y, Lin Y, Huang Z-H, Shen W, Qiu X, Kang F (2015) Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 15:43–53CrossRefGoogle Scholar
  21. 21.
    Wang X, Shen G (2015) Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 15:104–115CrossRefGoogle Scholar
  22. 22.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  23. 23.
    Galiński M, Acznik I (2012) Study of a graphene-like anode material in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid for Li-ion batteries. J Power Sources 216:5–10CrossRefGoogle Scholar
  24. 24.
    Jagiello J, Olivier JP (2013) 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation. Carbon 55:70–80CrossRefGoogle Scholar
  25. 25.
    Jagiello J, Olivier JP (2013) Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19:777–783CrossRefGoogle Scholar
  26. 26.
    Naoi K, Ishimoto S, Miyamoto J, Naoi W (2012) Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 5:9363–9373CrossRefGoogle Scholar
  27. 27.
    Decaux C, Lota G, Raymundo-Pinero E, Frąckowiak E, Béguin F (2012) Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis(trifluoromethane)sulfonimide-based electrolyte. Electrochim Acta 86:282–286CrossRefGoogle Scholar
  28. 28.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  29. 29.
    Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48(3):630–635CrossRefGoogle Scholar
  30. 30.
    Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592CrossRefGoogle Scholar
  31. 31.
    Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I (2014) Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc Relat Phenom 195:145–154CrossRefGoogle Scholar
  32. 32.
    Bele S, Samanidou V, Deliyanni E (2016) Effect of the reduction degree of graphene oxide on the adsorption of Bisphenol A. Chem Eng Res Des 109:573–585CrossRefGoogle Scholar
  33. 33.
    Buchsteiner A, Lerf A, Pieper J (2006) Water dynamics in graphite oxide investigated with neutron scattering. J Phys Chem B 110(45):22328–22338PubMedCrossRefGoogle Scholar
  34. 34.
    Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023CrossRefGoogle Scholar
  35. 35.
    Seredych M, Tamashausky AV, Bandosz TJ (2010) Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions. Adv Funct Mater 20:1670–1679CrossRefGoogle Scholar
  36. 36.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  37. 37.
    Yazami R, Deschamps M (1995) High reversible capacity carbon-lithium negative electrode in polymer electrolyte. J Power Sources 54:411–415CrossRefGoogle Scholar
  38. 38.
    Frąckowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37:61–69CrossRefGoogle Scholar
  39. 39.
    Yang Z, Wu H (2001) Electrochemical intercalation of lithium into fullerene soot. Mater Lett 50:108–114CrossRefGoogle Scholar
  40. 40.
    Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264(5158):556–558PubMedCrossRefGoogle Scholar
  41. 41.
    Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21(14):3136–3142CrossRefGoogle Scholar
  42. 42.
    Konno H, Kasashima T, Azumi K (2009) Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors. J Power Sources 191:623–627CrossRefGoogle Scholar
  43. 43.
    Ren JJ, Su LW, Qin X, Yang M, Wei JP, Zhou Z, Shen PW (2014) Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sources 264:108–113CrossRefGoogle Scholar
  44. 44.
    Lee JH, Shin WH, Lim SY, Kim BG, Choi JW (2014) Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors. Mater Renew Sustain Energy 3(1):1–8CrossRefGoogle Scholar
  45. 45.
    Zhang T, Zhang F, Zhang L, Lu Y, Zhang Y, Yang X, Ma Y, Huang Y (2015) High energy density Li-ion capacitor assembled with all graphene-based electrodes. Carbon 92:106–118CrossRefGoogle Scholar
  46. 46.
    Kim H-K, Mhamane D, Kim M-S, Roh H-K, Aravindan V, Madhavi S, Roh KC, Kim K-B (2016) TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J Power Sources 327:171–177CrossRefGoogle Scholar
  47. 47.
    Song H, Fu J, Ding K, Huang C, Wu K, Zhang X, Gao B, Huo K, Peng X, Chu PK (2016) Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J Power Sources 328:599–606CrossRefGoogle Scholar
  48. 48.
    Sun F, Gao J, Liu X, Wang L, Yang Y, Pi X, Wu S, Qin Y (2016) High-energy Li-ion hybrid supercapacitor enabled by a long life N-rich carbon based anode. Electrochim Acta 213:626–632CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of New Technologies for Energy Storage, Institute of Non-Ferrous Metals Division in PoznanCentral Laboratory of Batteries and CellsPoznanPoland

Personalised recommendations