Advertisement

Journal of Solid State Electrochemistry

, Volume 16, Issue 1, pp 253–263 | Cite as

Efficient maximization of coloration by modification in morphology of electrodeposited NiO thin films prepared with different surfactants

  • Dhanaji S. Dalavi
  • Meenatai J. Suryavanshi
  • Sawanta S. Mali
  • Dipali S. Patil
  • Pramod S. PatilEmail author
Original Paper

Abstract

In this paper, we report on the nickel oxide (NiO) thin films potentiostatically electrodeposited onto indium-doped tin oxide-coated glass substrates by using two types of organic surfactants: (1) non-ionic: polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and (2) anionic: sodium dodecyl sulfate (SDS). An aqueous solution containing nickel sulfate precursor and potassium hydroxide buffer was used to grow the samples. The effect of organic surfactants on its structural, morphological, wettability, optical, electrochromic, and in situ colorimetry were studied using X-ray diffraction, scanning electron microscopy, contact angle, FT-IR spectroscopy, optical transmittance, cyclic voltammetry, and CIE system of colorimetry. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. A nanoporous structure with pore diameter of about 150–200 nm was observed for pure NiO. The films deposited with the aid of organic surfactants exhibits various surface morphological feature. PVP-mediated NiO thin film shows noodle-like morphology with well-defined surface area whereas, an ordered pore structure composed of channels of uniform diameter of about 60–80 nm was observed for PEG. A compact and smooth surface with nanoporous structure stem from SDS helps for improved electrochromic performance compared with that of NiO deposits from surfactant-free solution. Wetting behavior shows, transformation from hydrophilic to superhydrophilic nature of NiO thin films deposited with organic surfactant, which helps for much more paths for electrolyte access. The surfactant-mediated NiO produce high color/bleach transmittance difference up to 57% at 630 nm. On oxidation of NiO/SDS, the CIELAB 1931 2° color space coordinates show the transition from colorless to the deep brown state (L* = 84.41, a* = −0.33, b* = 4.41, and L* = 43.78, a* = 7.15, b* = 13.69), with steady decrease in relative luminance. The highest coloration efficiency of 54 cm2 C−1 with an excellent reversibility of 97% was observed for NiO/SDS thin films.

Keywords

NiO thin films Organic surfactants Morphology Contact angle Electrochromic properties Colorimetric analysis 

Notes

Acknowledgment

One of the authors, Mr. D. S. Dalavi, is thankful to University Grants Commission (UGC) for the award of Rajiv Gandhi Junior Research Fellowship and UGC-New Delhi for the financial support though UGC-New Delhi Project F.No.211/2008 (SR).

Supplementary material

ESM 1

(AVI 1875 kb)

References

  1. 1.
    Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam, pp 162–165Google Scholar
  2. 2.
    Yu PC, Nazri G, Lampert CM (1987) Sol Energy Mater 19:1CrossRefGoogle Scholar
  3. 3.
    Hotovy I, Huran J, Spiess L, Hascik S, Rehacek V (1999) Sens Actuat B 57:147–152CrossRefGoogle Scholar
  4. 4.
    Nattestad A, Ferguson M, Kerr R, Cheng Yi-B, Bach U (2008) Nanotechnology 19(295304):3852–3854Google Scholar
  5. 5.
    Ghosh M, Biswas K, Sundaresan A, Rao CNR (2006) J Mater Chem 16:106–111CrossRefGoogle Scholar
  6. 6.
    Wei B, Yamamoto S, Ichikawa M, Li C, Takeshi F, Taniguchi Y (2007) Semicond Sci Technol 22:788–792CrossRefGoogle Scholar
  7. 7.
    Sreethawong T, Suzuki Y, Yoshikawa S (2005) Int J Hydrogen Energy 30:1053–1062CrossRefGoogle Scholar
  8. 8.
    Gomes A, da Silva Pereira MI (2006) Electrochim Acta 51:1342–1350CrossRefGoogle Scholar
  9. 9.
    Kavinchan J, Thongtem T, Thongtem S (2010) Mater Lett 61:2388–2391CrossRefGoogle Scholar
  10. 10.
    Zhu Z, Wei N, Liu H, Hea Z (2010) Advanced powder technology, In Press, Corrected Proof, Available online 1 July (doi: 10.1016/j.apt.2010.06.008)
  11. 11.
    Cavalcante LS, Sczancoski JC, Tranquilin RL, Varela JA, Longo E, Orlandi MO (2009) Particuology 7:353–362CrossRefGoogle Scholar
  12. 12.
    Thongtem T, Pilapong C, Kavinchan J, Phuruangrat A, Thongtem S (2010) J Alloy Comp 500:195–199CrossRefGoogle Scholar
  13. 13.
    Phuruangrat A, Thongtem T, Thongtem S (2009) J Alloy Compd 481:568–572CrossRefGoogle Scholar
  14. 14.
    Thongtem T, Jattukul S, Phuruangrat A, Thongtem S (2010) J Alloy Compd 491:654–665CrossRefGoogle Scholar
  15. 15.
    Moura AP, Cavalcante LS, Sczancoski JC, Stroppa DG, Paris EC, Ramirez AJ, Varela JA, Longo E (2010) Adv Powder Technol 21:197–202CrossRefGoogle Scholar
  16. 16.
    Inamdar AI, Mujawar SH, Ganesan V, Patil PS (2008) Nanotechnology 19:325706CrossRefGoogle Scholar
  17. 17.
    Retter U, Tchachnikova M (2003) J Electroanal Chem 550:201–208CrossRefGoogle Scholar
  18. 18.
    Opydo J (1992) Talanta 39:229–234CrossRefGoogle Scholar
  19. 19.
    Lai WH, Shieh J, Teoh LG, Hung IM, Liao CS, Hon MH (2005) J Alloy Compd 396:295–301CrossRefGoogle Scholar
  20. 20.
    Tan Y, Srinivasan S, Choi K-S (2005) J Am Chem Soc 127:3596–3604CrossRefGoogle Scholar
  21. 21.
    Lee J, Hwang DK, Choi JM, Lee K, Kim JH, Im S (2005) Appl Phys Lett 87:023504CrossRefGoogle Scholar
  22. 22.
    Nelson PA, Elliott JM, Attard GS, Owen JR (2002) J New Mater Electrochem Syst 5:63–65Google Scholar
  23. 23.
    Xia XH, Tu JP, Zhang J, Wang XL, Zhang WK, Huang H (2008) Electrochim Acta 53:5721–5724CrossRefGoogle Scholar
  24. 24.
    Purushothaman KK, Muralidharan G (2008) J Sol Gel Sci Technol 46:90–94CrossRefGoogle Scholar
  25. 25.
    Kamal H, Elmaghraby EK, Ali SA, Abdel-Hady K (2004) J Cryst Growth 262:424–434CrossRefGoogle Scholar
  26. 26.
    Wang X, Song J, Gao L, Jin Ji, Zheng H, Zhang Z (2005) Nanotechnology 16:37CrossRefGoogle Scholar
  27. 27.
    Uplane MM, Mujawar SH, Inamdar AI, Shinde PS, Sonavane AC, Patil PS (2007) Appl Surf Sci 251:9365–9371CrossRefGoogle Scholar
  28. 28.
    Maruyama T, Arai S (1993) Sol Energy Mater Sol Cells 30:257–262CrossRefGoogle Scholar
  29. 29.
    Penin N, Rougier A, Laffont L, Poizot P, Tarascon JM (2006) Sol Energy Mater Sol Cells 90:422–433CrossRefGoogle Scholar
  30. 30.
    Nagai J (1993) Sol Energy Mater Sol Cells 31:291–299CrossRefGoogle Scholar
  31. 31.
    Ahn KS, Nah YC, Sung YE (2003) Solid State Ionics 165:155–160CrossRefGoogle Scholar
  32. 32.
    Avendan E, Azens A, Isidorsson J, Karmhag R, Niklasson GA, Granqvist CG (2003) Solid State Ionics 165:169–173CrossRefGoogle Scholar
  33. 33.
    Wu MS, Yang CH (2007) Appl Phys Lett 91:033109CrossRefGoogle Scholar
  34. 34.
    Huo QS, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD (1994) Chem Mater 6:1176–1181CrossRefGoogle Scholar
  35. 35.
    Kadam LD, Patil PS (2001) Sol Energy Mater Sol Cells 69:361–369CrossRefGoogle Scholar
  36. 36.
    Korosec RC, Ogorevc JS, Draskovic P, Drazic G, Bukovec P (2008) Thin Solid Films 516:8264–8271CrossRefGoogle Scholar
  37. 37.
    Matar OK, Craster RV (2009) Soft Matter 5:801–808CrossRefGoogle Scholar
  38. 38.
    Peng X, Chen A (2005) Appl Phys A 80:473–476CrossRefGoogle Scholar
  39. 39.
    Dalavi DS, Suryavanshi MJ, Patil DS, Mali SS, Mohalkar AV, Kalagi SS, Vanalkar SA, Kang SR, Kim JH, Patil PS (2011) Appl Surf Sci. 257:2647–2656CrossRefGoogle Scholar
  40. 40.
    Ezema FI, Ekwealor ABC, Osuji RU (2008) Superficies y Vacío 21(1):6–10Google Scholar
  41. 41.
    Sonavane AC, Inamdar AI, Shinde PS, Deshmukh HP, Patil RS, Patil PS (2010) J Alloy Compd 489:667–673CrossRefGoogle Scholar
  42. 42.
    Lou X, Zhao X, Feng J, Zhou X (2009) Prog Org Coat 64:300–307CrossRefGoogle Scholar
  43. 43.
    Kalagi SS, Dalavi DS, Pawar RC, Tarwal NL, Mali SS, Patil PS (2010) J Alloy Compd 493:335–339CrossRefGoogle Scholar
  44. 44.
    CIE, Colorimetry (Official Recommendations of the International Commission on illumination) (1971) CIE Publication No15 ParisGoogle Scholar
  45. 45.
    Song HK, Lee EJ, Oh SM (2005) Chem Mater 17:2232–2233CrossRefGoogle Scholar
  46. 46.
    Mortimer RJ, Reynolds JR (2005) J Mater Chem 15:2226–2233CrossRefGoogle Scholar
  47. 47.
    Fei J, Lim KG, Palmore GTR (2008) Chem Mater 20(12):3832–3839CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Dhanaji S. Dalavi
    • 1
  • Meenatai J. Suryavanshi
    • 1
  • Sawanta S. Mali
    • 1
  • Dipali S. Patil
    • 1
  • Pramod S. Patil
    • 1
    Email author
  1. 1.Thin Films Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia

Personalised recommendations