Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

DFT study on tautomerism and natural bond orbital analysis of 4-substituted 1,2,4-triazole and its derivatives: solvation and substituent effects

  • 16 Accesses

Abstract

Density functional theory investigations at the DFT-B3LYP/6-311++G** theoretical level employed to determine the tautomerism, substituent effects of 4-substituted 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione, and its derivatives (4-R-H, 4-R-CH3, 4-R-F, 4-R-NO2) in the selected solvent (acetone, acetonitrile, and dichloromethane) and gas phases using the polarizable continuum method (PCM) model. The substituted 1,2,4-triazoles have two main different tautomers namely N2-H and S7-H. For considered derivatives, thione forms are more energetically stable and dominant form in the studied solvent and gas phases. In addition, geometrical parameters, charges on atoms, dipole moments, energetic properties, and the nucleus-independent chemical shifts (NICS) are investigated. It has been seen that these molecular features of the studied compound and its derivatives are mostly solvent dependent. For electron-releasing and -withdrawing derivatives in the solution and gas phases, 2-H forms are the more stable and dominant form. The relative stability of the C4-substituted 1,2,4-triazole tautomerism is influenced by the possibility for intramolecular interactions between substituent and electron-donor or electron-acceptor centers of the triazole ring.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Elguero J, Katritzky AR, Denisko OV (2000). Adv Heterocycl Chem 76:2

  2. 2.

    Friedrichsen W, Traulsen T, Elguero J, Katritzky AR (2000). Adv Heterocycl Chem 76:85

  3. 3.

    Minkin VI, Garnovski AD, Elguero J, Katritzky AR, Denisko O (2000). Adv Heterocycl Chem 76:157

  4. 4.

    Koch A, Kleinpeter E (1997). J Mol Model 3:375

  5. 5.

    Kleinpeter E, Koch A (2001). J Phys Org Chem 14:566

  6. 6.

    Tavakol H, Esfandyari M, Taheri S, Heydari A (2011). Acta A Mol Biomol Spectrosc 79:574

  7. 7.

    Kwiatkowski JS, Zielenski TJ, Rein R (1986). Adv Quantum Chem 18:85

  8. 8.

    Namratha B, Gaonkar SL (2014). Int J Pharm 6:73

  9. 9.

    Nekkanti S, Tokala R, Shankaraiah N (2017). Curr Med Chem 24:2887

  10. 10.

    Sahu JK, Ganguly S, Kaushik A (2013). Chin J Nat Med 11:456

  11. 11.

    Ghochikyan TV, Samvelyan MA, Galstyan AS, Grigoryan SV (2016). Chem Biol 2:8

  12. 12.

    Al-Khawas MS, Hazaa BAA, Al-Din AS (1979). Sci Pharm 47:314

  13. 13.

    Davari MD, Bahrami H, Zolmajd-Haghighi Z, Zahedi M (2010). J Mol Model 16:841

  14. 14.

    Iqbal R, Rama NH, Yunus U, Saeed A, Zamani K (1997). J Chem Soc Pak 19:145

  15. 15.

    Yan W, Xue Y, Zhu H, Zeng J, Xie D (2004). J Comput Chem 25:1833

  16. 16.

    Onsager L (1936). J Am Chem Soc 58:1486

  17. 17.

    Rivail L, Rinaldi D (1973). Theor Chim Acta 32:57

  18. 18.

    Hall RJ, Davidson MM, Burton NA, Hillier IH (1995). J Phys Chem 99:921

  19. 19.

    Hobza P, Sponer J (1999). Chem Rev 99:3247

  20. 20.

    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

  21. 21.

    Becke AD (1993). J Chem Phys 98:5648

  22. 22.

    Schleyer PVR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJR (1996). J Am Chem Soc 118:6317

  23. 23.

    Cysewski P (2005). J Mol Struct (Theochem) 714:29

  24. 24.

    Nigam S, Majumder C, Kulshreshtha SK (2006). J Chem Sci 118:575

  25. 25.

    Schleyer PVR, Manoharan M, Wang ZX, Kiran B, Jiao HJ, Puchta R, Hommes N (2001). Org Lett 3:2465

  26. 26.

    Schleyer PVR, Jiao H, Goldfuss B, Freeman PK (1995). Angew Chem Int Ed Engl 34:337

  27. 27.

    Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735

  28. 28.

    Badenhoop JK, Weinhold F (1999). Int J Quantum Chem 72:269

  29. 29.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, Revision B.01. Gaussian, Wallingford

  30. 30.

    Anandan K, Kolandaivel P, Kumaresan R (2004). J Mol Struct (Thoechem) 686:83

  31. 31.

    Karthika M, Senthilkumar L, Kanakaraju R (2014). Struct Chem 25:197

  32. 32.

    Senthilkumar L, Kolandaivel P (2003). J Mol Struct (Thoechem) 638:69

  33. 33.

    Zahedi E, Shaabani S, Shiroudi A (2017). J Phys Chem A 121:8504

  34. 34.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2003) NBO Version 3.1

  35. 35.

    Miertus S, Scrocco E, Tomasi J (1981). Chem Phys 55:117

  36. 36.

    Miertus S, Tomasi J (1982). Chem Phys 65:239

  37. 37.

    Cances MT, Mennucci V, Tomasi J (1997). J Chem Phys 107:3032

  38. 38.

    Cossi M, Barone V, Mennucci B, Tomasi J (1998). Chem Phys Lett 286:253

  39. 39.

    Barone V, Cossi M, Tomasi J (1998). J Comput Chem 19:404

  40. 40.

    Barone V, Cossi M (1998). J Phys Chem A 102:1995

  41. 41.

    Wolinski K, Hilton JF, Pulay P (1990). J Am Chem Soc 112:8251

  42. 42.

    Ditchfield R (1974). Mol Phys 27:789

  43. 43.

    Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899

  44. 44.

    Palafox MA, Tardajos G, Guerrero-Martinez A, Rastogi VK, Mishra D, Ojha SP, Kiefer W (2007). Chem Phys 340:17

  45. 45.

    Politzer P, Daiker KC (1981) The force concept in chemistry. Van Nostrand Reinhold Co, New York

  46. 46.

    Politzer P, Laurence PR, Jayasuriya K, McKinney J (1985). Health Perspect 61:191

  47. 47.

    Politzer P, Murray JS (1991) In: Beveridge DL, Lavery R (eds) Theoretical biochemistry and molecular biophysics: a comprehensive survey, vol 2. Adenine Press, Schenectady, pp 165–191, Chapter 13

  48. 48.

    Scrocco E, Tomasi J (1973) Topics in current chemistry, vol 42. Springer-Verlag, Berlin

  49. 49.

    Tahmassebi D (2003). J Mol Struct (Theochem) 638:11

  50. 50.

    Padmaja L, Ravi Kumar C, Sajan D, Joe IH, Jayakumar VS, Pettit GR (2009). J Raman Spectrosc 40:419

  51. 51.

    Sagdinc S, Pir H (2009). Spectrochim Acta A 73:181

  52. 52.

    Manolopoulos ED, May JC, Down SE (1991). Chem Phys Lett 181:105

  53. 53.

    Aihara J (1999). J Phys Chem A 103:7487

  54. 54.

    Ruiz-Morales Y (2002). J Phys Chem A 106:11283

  55. 55.

    Rubio-Pons Ò, Serrano-Andrés L, Burget D, Jacques P (2006). J Photochem Photobiol A 179:298

  56. 56.

    Schleyer PVR, Jiao H (1996). Pure Appl Chem 68:209

  57. 57.

    Salimi Beni A, Aazari M, Najafi Chermahini A, Zarandi M (2016). J Phys Chem A 90:1859

  58. 58.

    Wong MW, Wiberg KB, Frisch MJ (1992). J Am Chem Soc 114:1645

  59. 59.

    Krygowski TM, Cyranski M, Ciesielski A, Swirska B, Leszczynski P (1996). J Chem Inf Comput Sci 36:1135

  60. 60.

    Badoglu S, Yurdakul S (2010). Struct Chem 21:1103

Download references

Author information

Correspondence to Abolfazl Shiroudi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 313 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shiroudi, A., Safaei, Z., Kazeminejad, Z. et al. DFT study on tautomerism and natural bond orbital analysis of 4-substituted 1,2,4-triazole and its derivatives: solvation and substituent effects. J Mol Model 26, 57 (2020). https://doi.org/10.1007/s00894-020-4316-9

Download citation

Keywords

  • DFT
  • 1,2,4-triazole
  • Tautomerism
  • Solvent effect
  • NBO