Low-temperature dependence on the THz spectrum of CL-20/TNT energetic cocrystal by molecular dynamics simulations

  • 18 Accesses


Based on the unique advantages of terahertz (THz) spectrum on the detection of energetic cocrystals, the low-temperature dependent THz spectra of CL-20/TNT cocrystal were investigated by using molecular dynamics (MD) simulations from 5 to 296 K, as well as three different crystal faces, (001), (120), and (010). When the temperature decreases below 95 K, we have observed two new peaks for CL-20/TNT cocrystal, at 4.58 and 5.99 THz, respectively. Also, the THz peaks below 1.5 THz gradually disappear under cooling from 296 to 5 K, and they should originate from the lattice thermal vibrations. THz absorption peaks of CL-20/TNT cocrystal reveal frequency shifting, linearly dependent on temperature. Four of them are red shift and other two are blue shift of THz vibrational peaks of CL-20/TNT cocrystal with the temperature increase. The frequency shifts can be attributed to the effects of lattice thermal expansion on inter-/intramolecular vibrational modes as well as their coupling. From the temperature-dependent THz spectra of different crystal faces, we further confirm the response of different kinds of intermolecular interactions on the THz spectrum of CL-20/TNT cocrystal.

The intermolecular interactions and peak positions of THz spectra of CL-20/TNT cocrystal in the range of 0–6 THz versus temperature

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Sun S, Zhang H, Xu J, Wang H, Wang S, Yu Z, Zhu C, Sun J (2019) Design, preparation, characterization and formation mechanism of a novel kinetic CL-20-based cocrystal. Acta Crystallogr B 75:310–317

  2. 2.

    Zhang H, Guo C, Wang X, Xu J, He X, Liu Y, Liu X, Huang H, Sun J (2013) Five energetic cocrystals of BTF by intermolecular hydrogen bond and Π-stacking interactions. Cryst Growth Des 13:679–687

  3. 3.

    Kent RV, Wiscons RA, Sharon P, Grinstein D, Frimer AA, Matzger AJ (2017) Cocrystal engineering of a high nitrogen energetic material. Cryst Growth Des 18:219–224

  4. 4.

    Hang G, Yu W, Wang T, Wang J, Li Z (2018) Theoretical investigations on stabilities, sensitivity, energetic performance and mechanical properties of CL-20/NTO cocrystal explosives by molecular dynamics simulation. Theor Chem Accounts 137:114

  5. 5.

    Ma P, Zhang L, Zhu SG, Chen HH (2012) Synthesis, structural investigation, thermal decomposition, and properties of a cocrystal energetic perchlorate amine salt. Combust Explo Shock 48:483–487

  6. 6.

    Bolton O, Simke LR, Pagoria PF, Matzger AJ (2012) High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 12:4311–4314

  7. 7.

    Zhang J, Jin B, Peng R, Niu C, Guo Z, Zhang Q (2019) Novel strategies for synthesizing energetic materials based on BTO with improved performances. Dalton Trans 48:11848–11854

  8. 8.

    Xiao L, Guo S, Su H, Gou B, Liu Q, Hao G, Hu Y, Wang X, Jiang W (2019) Preparation and characteristics of a novel PETN/TKX-50 co-crystal by a solvent/non-solvent method. RSC Adv 9:9204–9210

  9. 9.

    Chapman CJ, Groven LJ (2019) Evaluation of a CL-20/TATB energetic co-crystal. Propell Explos Pyrot 44:293–300

  10. 10.

    Baxter JB, Guglietta GW (2011) Terahertz spectroscopy. Anal Chem 83:4342–4368

  11. 11.

    Kemp MC (2011) Explosives detection by terahertz spectroscopy—a bridge too far? IEEE T THz Sci Techn 1:282–292

  12. 12.

    McIntosh AI, Yang B, Goldup SM, Watkinson M, Donnan RS (2012) Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chem Soc Rev 41:2072–2082

  13. 13.

    Jepsen PU, Cooke DG, Koch M (2011) Terahertz spectroscopy and imaging-modern techniques and applications. Laser Photonics Rev 5:124–166

  14. 14.

    Takahashi M (2014) Terahertz vibrations and hydrogen-bonded networks in crystals. Crystals 4:74–103

  15. 15.

    Cai Q, Xue J, Wang Q, Du Y (2017) Solid-state cocrystal formation between acyclovir and fumaric acid: terahertz and Raman vibrational spectroscopic studies. Spectrochim Acta A 186:29–36

  16. 16.

    El Haddad J, Bousquet B, Canioni L, Mounaix P (2013) Review in terahertz spectral analysis. Trends Anal Chem 44:98–105

  17. 17.

    Delaney SP, Korter TM (2015) Terahertz spectroscopy and computational investigation of the flufenamic acid/nicotinamide cocrystal. J Phys Chem A 119:3269–3276

  18. 18.

    Andrey P, Sewell TD, Thompson DL (2014) Calculation of anharmonic couplings and Thz linewidths in crystalline PETN. J Chem Phys 140:18

  19. 19.

    Choi K, Hong T, Sim KI, Ha T, Park BC, Jin HC, Cho SG, Kim JH (2014) Reflection terahertz time-domain spectroscopy of RDX and HMX explosives. J Appl Phys 115:18

  20. 20.

    Katz G, Zybin S, Goddard I WA, Zeiri Y, Kosloff R (2014) Direct MD simulations of terahertz absorption and 2D spectroscopy applied to explosive crystals. J Phys Chem Lett 5:772–776

  21. 21.

    Rahm M, Yang Z, Yin Q, Li H, Vodopyanov K, Shi W, Zhang C (2013) Measurement precision analysis for terahertz absorption spectrum of explosive materials by using terahertz transmissione spectroscopy. Proc SPIE 8909:89090U

  22. 22.

    Jeffrey B, Hooks DE, Funk DJ, Averitt RD, Taylor AJ, Dmitri B (2005) Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy. J Phys Chem A 109:3501–3505

  23. 23.

    Lepodise LM, Horvat J, Lewis RA (2015) Terahertz spectroscopy of 2,4-dinitrotoluene over a wide temperature range (7-245 K). J Phys Chem A 119:263–270

  24. 24.

    Jensen JO, Burnett AD, Cui H, Fan WH, Upadhya PC, Cunningham JE, Edwards HGM, Kendrick J, Munshi T, Hargreaves M, Linfield EH, Davies AG (2007) Broadband terahertz time-domain and Raman spectroscopy of explosives. Proc SPIE 6549:654905–654910

  25. 25.

    Bolton O, Matzger AJ (2011) Improved stability and smart-material functionality realized in an energetic cocrystal. Angew Chem Int Ed 50:8960–8963

  26. 26.

    Shi L, Duan XH, Zhu LG, Liu X, Pei CH (2016) Directly insight into the inter- and intramolecular interactions of CL-20/TNT energetic cocrystal through the theoretical simulations of THz spectroscopy. J Phys Chem A 120:1160–1167

  27. 27.

    Sun H (1998) Compass : an Ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

  28. 28.

    Bunte SW (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104:2477–2489

  29. 29.

    Riseman J, Kirkwood JG (1949) The statistical mechanical theory of irreversible processes. The Theory of Irreversible Processes, Наука

  30. 30.

    Leahy-Hoppa MR, Fitch MJ, Zheng X, Hayden LM, Osiander R (2007) Wideband terahertz spectroscopy of explosives. Chem Phys Lett 434:227–230

  31. 31.

    Dlott DD (1986) Optical phonon dynamics in molecular crystals. Phys Chem 37:157–187

  32. 32.

    Ruggiero MT, Zeitler JA (2016) Resolving the origins of crystalline anharmonicity using terahertz time-domain spectroscopy and Ab initio simulations. J Phys Chem B 120:11733–11739

  33. 33.

    Takahashi M, Ishikawa Y (2015) Terahertz vibrations of crystalline Α-D-glucose and the spectral change in mutual transitions between the anhydride and monohydrate. Chem Phys Lett 642:29–34

  34. 34.

    Takahashi M, Ishikawa Y, Ito H (2012) The dispersion correction and weak-hydrogen-bond network in low-frequency vibration of solid-state salicylic acid. Chem Phys Lett 531:98–104

  35. 35.

    Walther M, Fischer BM, Uhd Jepsen P (2003) Noncovalent intermolecular forces in polycrystalline and amorphous saccharides in the far infrared. Chem Phys 288:261–268

  36. 36.

    Hoshina H, Morisawa Y, Sato H, Minamide H, Noda I, Ozaki Y, Otani C (2011) Polarization and temperature dependent spectra of poly(3-hydroxyalkanoate)s measured at terahertz frequencies. Phys Chem Chem Phys 13:9173–9179

  37. 37.

    Zhang F, Wang HW, Tominaga K, Hayashi M (2015) Intramolecular vibrations in low-frequency normal modes of amino acids: L-alanine in the neat solid state. J Phys Chem A 119:3008–3022

  38. 38.

    Zhang F, Wang HW, Tominaga K, Hayashi M (2016) Characteristics of low-frequency molecular phonon modes studied by THz spectroscopy and solid-state Ab initio theory: polymorphs I and III of diflunisal. J Phys Chem B 120:1698–1710

  39. 39.

    Zhang F, Kambara O, Tominaga K, Nishizawa J, Sasaki T, Wang HW, Hayashi M (2014) Analysis of vibrational spectra of solid-state adenine and adenosine in the terahertz region. RSC Adv 4:269–278

Download references

Author information

Correspondence to Xiao-Hui Duan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, L., Duan, X., Zhu, L. et al. Low-temperature dependence on the THz spectrum of CL-20/TNT energetic cocrystal by molecular dynamics simulations. J Mol Model 26, 25 (2020) doi:10.1007/s00894-019-4270-6

Download citation


  • CL-20/TNT cocrystal
  • THz spectrum
  • Low-temperature dependence
  • Molecular dynamics simulations