Journal of Molecular Modeling

, 25:365 | Cite as

Study on the Mechanical Properties of Rubber Asphalt by Molecular Dynamics Simulation

  • Fucheng Guo
  • Jiupeng ZhangEmail author
  • Jianzhong Pei
  • Bochao Zhou
  • Zhuang Hu
Original Paper


Introducing the crumb rubber into asphalt binder not only can improve the performances of asphalt binder significantly but also can recycle the waste tire economically. However, rubber asphalt presents different mechanical property for the complex sources of crumb rubber. In this study, rubber was classified according to the application situation and the components of tires and three kinds of rubber were selected as the representative of commonly used rubber. Afterwards, molecular dynamics simulations including molecular modelling, dynamics calculation, and mechanical properties analysis were conducted for rubber asphalt with the obtained rubber based on Materials Studio 8.0 software. The variation of mechanical properties of rubber asphalt with rubber contents and rubber types was investigated. The results show that the optimum rubber contents for the tire tread of passenger car, the tire tread of truck, and the tire sidewall are 15%, 5~10%, and 15% respectively. Moreover, rubber from the tire tread of passenger car and the tire sidewall should be given priority for actual applications in rubber asphalt.

Graphical Abstract



Rubber asphalt Rubber classification Mechanical properties Molecular dynamics simulation 



This study was funded by National Key R&D Program of China (Grant No. 2018YFE0103800), National Natural Science Foundation of China (Grant No. 5197081751), and Innovation Talent Promotion Program-Scientific and Technological Innovation Team in Shaanxi Province (Grant No. 2017KCT-13).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Huang B, Mohammad LN, Graves PS et al (2002) Louisiana experience with crumb rubber-modified hot-mix asphalt pavement. Transp Res Rec 1789(1):1–13CrossRefGoogle Scholar
  2. 2.
    Chen Z, Pei J, Li R et al (2018) Performance characteristics of asphalt materials based on molecular dynamics simulation–A review. Constr Build Mater 189:695–710CrossRefGoogle Scholar
  3. 3.
    Way GB (2000) OGFC meets CRM where the rubber meets the rubber 12 years of durable success. Asphalt Rubber:15–31Google Scholar
  4. 4.
    Jeon IH, Kim H, Kim SG (2003) Characterization of rubber micro-morphology by atomic force microscopy (AFM). Rubber Chem Technol 76(1):1–11CrossRefGoogle Scholar
  5. 5.
    Xiao F, Amirkhanian SN, Shen J, Putman B (2009) Influences of crumb rubber size and type on reclaimed asphalt pavement (RAP) mixtures. Constr Build Mater 23(2):1028–1034CrossRefGoogle Scholar
  6. 6.
    Vargas-Nordcbeck A, Timm DH (2012) Rutting characterization of warm mix asphalt and high RAP mixtures. Road Mater Pavement 13(sup1):1–20CrossRefGoogle Scholar
  7. 7.
    Palit SK, Reddy KS, Pandey BB (2004) Laboratory evaluation of crumb rubber modified asphalt mixes. J Mater Civ Eng 16(1):45–53CrossRefGoogle Scholar
  8. 8.
    Li DD, Greenfield ML (2014) Chemical compositions of improved model asphalt systems for molecular simulations. Fuel. 115:347–356CrossRefGoogle Scholar
  9. 9.
    Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron. 99(6):1129–1143PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Yao H, Dai Q, You Z (2016) Molecular dynamics simulation of physicochemical properties of the asphalt model. Fuel. 164:83–93CrossRefGoogle Scholar
  11. 11.
    Zhang L, Greenfield ML (2007) Analyzing properties of model asphalts using molecular simulation. Energy Fuel 21(3):1712–1716CrossRefGoogle Scholar
  12. 12.
    Xu G, Wang H (2017) Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 188:1–10CrossRefGoogle Scholar
  13. 13.
    Hansen JS, Lemarchand CA, Nielsen E et al (2013) Four-component united-atom model of bitumen. J Chem Phys 138(9):094508PubMedCrossRefGoogle Scholar
  14. 14.
    Khabaz F, Khare R (2018) Molecular simulations of asphalt rheology: Application of time–temperature superposition principle. J Rheol 62(4):941–954CrossRefGoogle Scholar
  15. 15.
    Khabaz F, Khare R (2015) Glass transition and molecular mobility in styrene–butadiene rubber modified asphalt. J Phys Chem B 119(44):14261–14269PubMedCrossRefGoogle Scholar
  16. 16.
    Pan J, Tarefder RA (2016) Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation. Mol Simul 42(8):667–678CrossRefGoogle Scholar
  17. 17.
    Yao H, Dai Q, You Z et al (2018) Modulus simulation of asphalt binder models using Molecular Dynamics (MD) method. Constr Build Mater 162:430–441CrossRefGoogle Scholar
  18. 18.
    Xu G, Wang H (2016) Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation. Comput Mater Sci 112:161–169CrossRefGoogle Scholar
  19. 19.
    Yagyu H, Utsumi T (2009) Coarse-grained molecular dynamics simulation of nanofilled crosslinked rubber. Comput Mater Sci 46(2):286–292CrossRefGoogle Scholar
  20. 20.
    Rubber Manufacturer's Association (2014). USA.Google Scholar
  21. 21.
    Thomas BS, Gupta RC (2016) A comprehensive review on the applications of waste tire rubber in cement concrete. Renew Sust Energ Rev 54:1323–1333CrossRefGoogle Scholar
  22. 22.
    Chen Z, Wang T, Pei J et al (2019) Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. J Clean Prod 234:1262–1274CrossRefGoogle Scholar
  23. 23.
    Ziari H, Goli A, Amini A (2016) Effect of crumb rubber modifier on the performance properties of rubberized binders. J Mater Civ Eng 28(12):04016156CrossRefGoogle Scholar
  24. 24.
    Wang H, Al-Qadi IL, Portas S et al (2013) Three-dimensional finite element modeling of instrumented airport runway pavement responses. Transp Res Rec 2367(1):76–83CrossRefGoogle Scholar
  25. 25.
    Zhang H (2011) Study on asphalt modified with scrap passenger car tire rubber [master’s thesis]. Shanghai Jiao Tong University, Shanghai, p 2011Google Scholar
  26. 26.
    Wiehe IA, Liang KS (1996) Asphaltenes, resins, and other petroleum macromolecules. Fluid Phase Equilib 117(1-2):201–210CrossRefGoogle Scholar
  27. 27.
    ASTM D4124-09. Standard test method for separation of asphalt into four fractions. Annual Book of the ASTM standards 2009; 2009.Google Scholar
  28. 28.
    Cuadri AA, Partal P, Navarro FJ et al (2011) Bitumen chemical modification by thiourea dioxide. Fuel. 90(6):2294–2300CrossRefGoogle Scholar
  29. 29.
    Jennings PW, Pribanic JA, Desando MA, et al. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy. Washington, DC 20001: The National Academies of Sciences, Engineering, and Medicine; 1993. (Publication; No. SHRP-A-335).Google Scholar
  30. 30.
    Ding Y, Huang B, Shu X et al (2016) Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders. Fuel. 174:267–273CrossRefGoogle Scholar
  31. 31.
    Storm DA, Edwards JC, Decanio SJ et al (1994) Molecular representations of Ratawi and Alaska North Slope asphaltenes based on liquid-and solid-state NMR. Energy Fuel 8(3):561–566CrossRefGoogle Scholar
  32. 32.
    Artok L, Su Y, Hirose Y et al (1999) Structure and reactivity of petroleum-derived asphaltene. Energy Fuel 13(2):287–296CrossRefGoogle Scholar
  33. 33.
    Storm DA, Decanio SJ, Detar MM et al (1990) Upper bound on number average molecular weight of asphaltenes. Fuel. 69(6):735–738CrossRefGoogle Scholar
  34. 34.
    Sun D, Lin T, Zhu X et al (2016) Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders. Comput Mater Sci 114:86–93CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Sun M (2012) Rubber variety and performance manual. Chemical Industry Press, Beijing (CN)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fucheng Guo
    • 1
  • Jiupeng Zhang
    • 1
    Email author
  • Jianzhong Pei
    • 1
  • Bochao Zhou
    • 1
  • Zhuang Hu
    • 2
  1. 1.Key Laboratory for Special Area Highway Engineering of Ministry of EducationChang’an UniversityXi’anChina
  2. 2.China Merchants Chongqing Communications Technology Research & Design Institute Co., Ltd.ChongqingChina

Personalised recommendations