Journal of Molecular Modeling

, 25:356 | Cite as

First-principle calculations of electronic, vibrational, and thermodynamic properties of 1,3-diamino-2,4,6-trinitrobenzene

  • Wei-Hong Liu
  • Wei Zeng
  • Han QinEmail author
  • Cheng-Lu Jiang
  • Fu-Sheng Liu
  • Bin Tang
  • Yu-Xing Lei
  • Qi-Jun LiuEmail author
Original Paper


Energy-containing materials have aroused people’s widespread concern because of its admirable performance in recent years. In this paper, the electronic structure, vibrational, and thermodynamic properties of 1,3-diamino-2,4,6-trinitrobenzene (DATB) are systematically investigated by adopting the first-principle calculations. We find that lattice parameters are in excellent agreement with the previous calculated and experimental values. The vibration spectra are described in detail and the peaks in the Raman and infrared spectra are assigned to different vibration modes. Phonon dispersion curves indicate that the DATB is dynamically stable. According to the vibrational properties, the thermodynamic functions such as enthalpy (H), constant volume heat capacity (CV), Helmholtz free energy (F), Debye temperature (Θ), and entropy (S) are analyzed. No corresponding experimental values have been found so far, and therefore, knowledge of these properties will provide a reference and guidance for the follow-up research.


DATB Vibration Thermodynamics First-principle calculations 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant No. 11574254), the Fundamental Research Funds for the Central Universities (Grant No. 2682019LK07), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201843), the Doctoral Innovation Fund Program of Southwest Jiaotong University (Grant No. D-CX201735), and the Doctoral Students Top-notch Innovative Talent Cultivation of Southwest Jiaotong University, the 18th Key Laboratory Open Project of Southwest Jiaotong University (Grant No. ZD201918084).


  1. 1.
    Chang J, Lian P, Wei DQ, Chen XR, Zhang QM, Gong ZZ (2010) Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations. Phys Rev Lett 105:188302–188308PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Pangilinan GI, Gupta YM (1994) Time-resolved Raman measurements in nitromethane shocked to 140kbar. J Phys Chem 98:4522–4529CrossRefGoogle Scholar
  3. 3.
    Zhang MX, Eaton PE, Gilardi R (2000) Hepta-and octanitrocubanes. Angew Chem Int Ed Engl 39:401–404PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Landenberger KB, Bolton O, Matzger AJ (2015) Energetic-energetic cocrystals of diacetone diperoxide (DADP): dramatic and divergent sensitivity modifications via cocrystallization. J Am Chem Soc 137:5074–5079PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Pospíšil M, Vávra M, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Witze A (2010) Drilling hit by budget woes. Nature News 501:469–474CrossRefGoogle Scholar
  7. 7.
    Tsyshevsky R, Sharia O, Kuklja M (2016) Molecular theory of detonation initiation: insight from first principles modeling of the decomposition mechanisms of organic nitro energetic materials. Molecules 21:236–241PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Keshavarz MH, Abadi YH, Esmaeilpour K, Damiri S, Oftadeh M (2017) Introducing novel tetrazole derivatives as high performance energetic compounds for confined explosion and as oxidizer in solid propellants, Propellants, Explosives. Pyrotechnics 42:492–498CrossRefGoogle Scholar
  9. 9.
    Fedyanin IV, Lyssenko KA (2013) New hydrogen-bond-aided supramolecular synthon: a case study of 2, 4, 6-trinitroaniline. CrystEngComm 15:10086–10093CrossRefGoogle Scholar
  10. 10.
    Holden JR, Dickinson C, Bock CM (1972) Crystal structure of 2, 4, 6-trinitroaniline. J Phys Chem 76:3597–3602CrossRefGoogle Scholar
  11. 11.
    Tiwari SC, Nomura KI, Kalia RK, Nakano A, Vashishta A (2017) Multiple reaction pathways in shocked 2, 4, 6-triamino-1, 3, 5-trinitrobenzene crystal. J Phys Chem C 121:16029–16034CrossRefGoogle Scholar
  12. 12.
    Singh A, Sharma TC, Kishore P (2017) Thermal degradation kinetics and reaction models of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. J Therm Anal Calorim 129:1403–1414CrossRefGoogle Scholar
  13. 13.
    Bennion JC, Vogt L, Tuckerman ME, Matzger AJ (2016) Isostructural cocrystals of 1, 3, 5-trinitrobenzene assembled by halogen bonding. Cryst Growth Des 16:4688–4693CrossRefGoogle Scholar
  14. 14.
    Belskaya OB, Mironenko RM, Talsi VP, Rodionov VA, Sysolyatin SV, Likholobov VA (2016) A study of Pd/C catalysts in the liquid-phase hydrogenation of 1, 3, 5-Trinitrobenzene and 2, 4, 6-Trinitrobenzoic acid. Selection of hydrogenation conditions for selective production of 1, 3, 5-Triaminobenzene. Procedia Eng 152:110–115CrossRefGoogle Scholar
  15. 15.
    Shoaf AL, Bayse CA (2018) Trigger bond analysis of nitroaromatic energetic materials using wiberg bond indices. J Comput Chem 39:1236–1248PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kohno Y, Mori K, Hiyoshi RI, Takahashi O, Ueda K (2016) Molecular dynamics and first-principles studies of structural change in 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) in crystalline state under high pressure: comparison of hydrogen bond systems of TATB versus 1, 3-diamino-2, 4, 6-trinitrobenzene (DATB). Chem Phys 472:163–172CrossRefGoogle Scholar
  17. 17.
    Wang WP, Liu FS, Liu QJ, Wang YG, Jiao Z, Li Y, Liu ZT (2016) The structural response to pressure of energetic crystal 1, 3-Diamino-2, 4, 6-trinitrobenzene: Density functional theory calculations and Hirshfeld surfaces analysis. Comput Theor Chem 1091:57–63CrossRefGoogle Scholar
  18. 18.
    Holden JR (1967) The structure of 1, 3-diamino-2, 4, 6-trinitrobenzene, form I. Acta Crystallogr 22:545–550CrossRefGoogle Scholar
  19. 19.
    Brill TB, James KJ (1993) Thermal decomposition of energetic materials. 61. Perfidy in the amino-2, 4, 6-trinitrobenzene series of explosives. J Phys Chem 97:8752–8758CrossRefGoogle Scholar
  20. 20.
    Trott WM, Renlund AM, Jungst RG (1985) Single-pulse Raman and photoacoustic spectroscopy studies of triaminotrinitrobenzene (TATB) and related compounds. In: Southwest Conf on Optics’ 85, International Society for Optics and Photonics, Albuquerque, vol 540. p 368–376Google Scholar
  21. 21.
    Wang GX, Gong XD, Xiao HM (2008) Theoretical study on the vibrational spectra and thermodynamic properties for nitro derivatives of benzene and anilines. Chin J Chem 26:1357–1362CrossRefGoogle Scholar
  22. 22.
    Chen F, Zhang H, Zhao F, Li QL, Qu JY (2008) A first-principles investigation on the hydrogen bond interaction in DATB. J Mol Struct THEOCHEM 864:89–92CrossRefGoogle Scholar
  23. 23.
    Guo F, Zhang H, Hu HQ, Cheng XL (2014) Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures. Chin Phys B 23:046501CrossRefGoogle Scholar
  24. 24.
    Keshavarz MH (2005) Simple determination of performance of explosives without using any experimental data. J Hazard Mater 119:25–29PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang H, Cheung F, Zhao F, Cheng XL (2009) Band gaps and the possible effect on impact sensitivity for some nitro aromatic explosive materials. Int J Quantum Chem 109:1547–1552CrossRefGoogle Scholar
  26. 26.
    Murray JS, Politzer P, Bolduc PR (1990) A relationship between impact sensitivity and the electrostatic potentials at the midpoints of C-NO2 bonds in nitroaromatics. Chem Phys Lett 168:135–139CrossRefGoogle Scholar
  27. 27.
    Lynch R (1990) Development of insensitive high explosives using propellant technology. In 26th Joint Propulsion Conference, Orlando, vol 2457. p 2457–2463Google Scholar
  28. 28.
    Chaykovsky M, Adolph HG (1995) 5–ureido-1, 3–diamino–2, 4, 5–trinitrobenzene: U.S. Patent 5410079. 4–25Google Scholar
  29. 29.
    Dong HS, Zhou FF (1989) Characteristics of high energy explosives and related substances, science press. 246–270Google Scholar
  30. 30.
    Craig BD (2005) Material failure modes, part I: a brief tutorial on fracture, ductile failure, elastic deformation, creep, and fatigue. J Fail Anal Prev 5:13–14CrossRefGoogle Scholar
  31. 31.
    Melius CF, Binkley JS (1988) Thermochemistry of the decomposition of nitramines in the gas phase, In Symposium (International) on combustion. Elsevier 21:1953–1963Google Scholar
  32. 32.
    Storm CB, Stine JR, Kramer JF (1990) Sensitivity relationships in energetic materials. Chemistry and physics of energetic materials. Springer Netherlands, Berlin, pp 605–639CrossRefGoogle Scholar
  33. 33.
    Min X, Wan X (2007) Electronic structure, chemical bond and property of TATB and DATB, The 2007 International Autumn Seminar on Propellants. Explosives Pyrotechnics:236–239Google Scholar
  34. 34.
    Kohno Y, Hiyoshi RI, Yamaguchi Y, Matsumoto S, Koseki A, Takahashi O, Yamasaki K, Ueda K (2009) Molecular dynamics studies of the structural change in 1, 3-diamino-2, 4, 6-trinitrobenzene (DATB) in the crystalline state under high pressure. J Phys Chem A 113:2551–2560PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Krist Cryst Mater 220:567–570Google Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Liu CS, Pilania G, Wang C, Ramprasad R (2012) How critical are the van der Waals interactions in polymer crystals? J Phys Chem A 116:9347–9352PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bucko T, Hafner J, Lebegue S, Angyán JG (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114:11814–11824PubMedCrossRefGoogle Scholar
  40. 40.
    Caciuc V, Atodiresei N, Callsen M, Lazić P, Blügel S (2012) Ab initio and semi-empirical van der Waals study of graphene–boron nitride interaction from a molecular point of view. J Phys Condens Matter 24:424214PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43:1494CrossRefGoogle Scholar
  42. 42.
    Fischer TH, Almlof J (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774CrossRefGoogle Scholar
  43. 43.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188CrossRefGoogle Scholar
  44. 44.
    Zhu W, Zhang X, Wei T, Xiao H (2009) First-principles study of crystalline mono-amino-2, 4, 6-trinitrobenzene, 1, 3-diamino-2, 4, 6-trinitrobenzene, and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene. J Mol Struct THEOCHEM 900:84–89CrossRefGoogle Scholar
  45. 45.
    Jiang CL, Zeng W, Liu FS, Tang B, Liu QJ (2019) First-principles analysis of vibrational modes of calcite, magnesite and dolomite. Journal of Physics and Chemistry of Solids. 131:1–9CrossRefGoogle Scholar
  46. 46.
    Vanovschi V (2008) Point group symmetry character tables. WebQC Org Retrieved 10(29).
  47. 47.
    Krishnan P, Gayathri K, Rajakumar PR, Jayaramakrishnan V, Gunasekaran S, Anbalagan G (2014) Studies on crystal growth, vibrational, optical, thermal and dielectric properties of new organic nonlinear optical crystal: Bis (2, 3-dimethoxy-10-oxostrychnidinium) phthalate nonahydrate single crystal. Spectrochim Acta A Mol Biomol Spectrosc 131:114–124PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Liu H, Zhao J, Ji G, Wei D, Gong Z (2006) Vibrational properties of molecule and crystal of TATB: a comparative density functional study. Phys Lett A 358:63–69CrossRefGoogle Scholar
  49. 49.
    van der Meer MT, Schouten S, Ward DM, Geenevasen JA, Damsté JSS (1999) All-cis hentriaconta-9, 15, 22-triene in microbial mats formed by the phototrophic prokaryote Chloroflexus. Org Geochem 30:1585–1587PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Jinnah MMA, Umadevi M, Ravikumar B, Ramakrishnan V (2004) infrared and laser Raman studies of bis (L-threoninium) sulphate monohydrate. Spectrochim Acta A Mol Biomol Spectrosc 60:2977–2983PubMedCrossRefGoogle Scholar
  51. 51.
    Mary MB, Sasirekha V, Ramakrishnan V (2005) Laser raman and infrared spectral studies of DL-phenylalaninium nitrate. Spectrochim Acta A Mol Biomol Spectrosc 62:446–452PubMedCrossRefGoogle Scholar
  52. 52.
    Dega-Szafran Z, Dutkiewicz G, Kosturkiewicz Z, Szafran M (2008) Structure of co-crystal of N-methylpiperidine betaine–l (+)-tartaric acid. J Mol Struct 889:286–296CrossRefGoogle Scholar
  53. 53.
    Sudha S, Sundaraganesan N, Kurt M, Cinar M, Karabacak M (2011) FT-IR and FT-Raman spectra, vibrational assignments, NBO analysis and DFT calculations of 2-amino-4-chlorobenzonitrile. J Mol Struct 985:148–156CrossRefGoogle Scholar
  54. 54.
    Varsányi G, Kovner MA, Láng L (1973) Assignments for vibrational spectra of 700 benzene derivatives. Akademiai Kiado, BudapestGoogle Scholar
  55. 55.
    Silverstein RM, Bassler GC (1962) Spectrometric identification of organic compounds. J Chem Educ 39:546–550CrossRefGoogle Scholar
  56. 56.
    Togo A, Oba F, Tanaka I (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl 2-type SiO 2 at high pressures. Phys Rev B 78:134106–134112CrossRefGoogle Scholar
  57. 57.
    Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scr Mater 108:1–5CrossRefGoogle Scholar
  58. 58.
    Blanco MA, Francisco E, Luana V (2004) GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput Phys Commun 158:57–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technologies of MaterialsMinistry of Education of ChinaChengduPeople’s Republic of China
  2. 2.Bond and Band Engineering Group, Sichuan Provincial Key Laboratory (for Universities) of High Pressure Science and TechnologySouthwest Jiaotong UniversityChengduPeople’s Republic of China
  3. 3.Teaching and Research Group of Chemistry, College of Medical TechnologyChengdu University of Traditional Chinese MedicineChengduPeople’s Republic of China
  4. 4.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations