Advertisement

Journal of Molecular Modeling

, 25:352 | Cite as

Effect of starch/CNT on biodesulfurization using molecular dynamic simulation

  • Soltan Sabaghian
  • Behnam Rasekh
  • Fatemeh YazdianEmail author
  • Marziyeh Shekarriz
  • Nabiallah Mansouri
Original Paper
  • 14 Downloads

Abstract

Nowadays, fossil fuel is the most important source of energy. However, the sulfur oxide release through oxidation of the available sulfur and the resultant air pollution has turned into an issue. In biodesulfurization (BDS) process, the sulfur from the recalcitrant organic compounds dissolved in crude oil fractions will be removed biologically. Carbon nanotubes (CNTs) exhibit good catalytic performance in dibenzothiophene (DBT) oxidation. Molecular dynamic simulation is the best and the only way to reach this end. Through this study, molecular dynamic simulations are applied to compute the effects of starch/CNTs on BDS process of DBT during 5 ns. The changes of cell length, energy, dynamic temperature, relative concentration of DBT, and radial distribution function (RDF) in the absence and presence of starch/CNTs were investigated. Regarding to the energy diagram, the fluctuation because of temperature fluctuations reaches the stable state. The high level of the first peak in RDF diagram showed the high and long desulfurization by microorganism. All the results showed stable and reasonable equilibrium state of the system. According to the graphs, the simultaneous in the presence of starch/CNT and Rhodococcus erythropolis increase the removal efficiency of nitrate reached 85% and in the absence of nanoparticle was 35.44%.

Keywords

Molecular dynamic simulations Dibenzothiophene Biodesulfurization Nanoparticle Starch/CNT 

Notes

References

  1. 1.
    Gunam IBW, Iqbal M, Arnata IW, Antara NS, Anggreni D, Made AA, Setiyo Y, Gunadnya IBP (2017) Biodesulfurization of dibenzothiophene by a newly isolated Agrobacterium tumefaciens LSU20. Appl Mech Mater, Trans Tech Publ:143–149Google Scholar
  2. 2.
    Jirde SA, Gonzalez-Osorio L, Eberle K, Vey J (2017) Investigating the catalytic cycle and active site residues of the biodesulfurizing enzyme, dibenzothiophene monooxygenase, DszC. FASEB J 31:606–610Google Scholar
  3. 3.
    Yang D, Zhang X, Wang C, Tang Y, Li J, Hu J (2009) Preparation of water-soluble multi-walled carbon nanotubes by Ce (IV)-induced redox radical polymerization. Prog Nat Sci 19:991–996CrossRefGoogle Scholar
  4. 4.
    Zhang W, Zhang H, Xiao J, Zhao Z, Yu M, Li Z (2014) Carbon nanotube catalysts for oxidative desulfurization of a model diesel fuel using molecular oxygen. Green Chem 16:211–220CrossRefGoogle Scholar
  5. 5.
    Karimi E, Yazdian F, Rasekh B, Jeffryes C, Rashedi H, Sepahi AA, Shahmoradi S, Omidi M, Azizi M, Bidhendi ME (2018) DBT desulfurization by decorating bacteria using modified carbon nanotube. Fuel. 216:787–795CrossRefGoogle Scholar
  6. 6.
    Xie J, Xue Q, Zheng Q, Chen H (2009) Investigation of the interactions between molecules of β-carotene, vitamin A and CNTs by MD simulations. Mater Lett 63:319–321CrossRefGoogle Scholar
  7. 7.
    Maghsoudi A, Yazdian F, Shahmoradi S, Ghaderi L, Hemati M, Amoabediny G (2017) Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans. Mater Sci Eng C 75:1259–1267.  https://doi.org/10.1016/j.msec.2017.03.032 CrossRefGoogle Scholar
  8. 8.
    Uddin NM, Capaldi FM, Farouk B (2012) Molecular dynamics simulations of carbon nanotube dispersions in water: Effects of nanotube length, diameter, chirality and surfactant structures. Comput Mater Sci 53:133–144CrossRefGoogle Scholar
  9. 9.
    Sahebnazar Z, Mowla D, Karimi G, Yazdian F (2017) Zero-valent iron nanoparticles assisted purification of rhamnolipid for oil recovery improvement from oily sludge. J Environ Chem Eng 6:917–922.  https://doi.org/10.1016/j.jece.2017.11.043 CrossRefGoogle Scholar
  10. 10.
    N. Alamdar, B. Rasekh, F. Yazdian, Effects of Fe/SDS and Au nanoparticles on Pseudomonas aeroginosa bacterial growth and biosurfactant production, IET Nanobiotechnology. (2018) 26–28. doi: https://doi.org/10.1049/iet-nbt.2016.0260.CrossRefGoogle Scholar
  11. 11.
    Rajab Beigy M, Rasekh B, Yazdian F, Aminzadeh B, Shekarriz M (2017) High nitrate removal by starch-stabilized Fe 0 nanoparticles in aqueous solution in a controlled system. Eng Life Sci:1–30.  https://doi.org/10.1002/elsc.201700127 CrossRefGoogle Scholar
  12. 12.
    Best RB, Buchete N-V, Hummer G (2008) Are current molecular dynamics force fields too helical? Biophys J 95:L07–L09CrossRefGoogle Scholar
  13. 13.
    A. Khezri, A. Karimi, F. Yazdian, M. Jokar, S.R. Mofradnia, H. Rashedi, Z. Tavakoli, Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: Emphasis on biofilm reduction, Int J Biol Macromol. (2018) #pagerange#. doi: https://doi.org/10.1016/j.ijbiomac.2018.03.100.CrossRefGoogle Scholar
  14. 14.
    Vlachakis D, Bencurova E, Papangelopoulos N, Kossida S (2014) Current state-of-the-art molecular dynamics methods and applications, in: Adv. Elsevier, Protein Chem. Struct. Biol., pp 269–313Google Scholar
  15. 15.
    Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1788CrossRefGoogle Scholar
  16. 16.
    Montazeri A, Rafii-Tabar H (2011) Multiscale modeling of graphene-and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375:4034–4040CrossRefGoogle Scholar
  17. 17.
    Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323CrossRefGoogle Scholar
  18. 18.
    Shokrieh MM, Rafiee R (2010) Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos Struct 92:2415–2420CrossRefGoogle Scholar
  19. 19.
    Zhong H, Lukes JR (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B 74:125403CrossRefGoogle Scholar
  20. 20.
    Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613CrossRefGoogle Scholar
  21. 21.
    Karimi E, Jeffryes C, Yazdian F, Akhavan Sepahi A, Hatamian A, Rasekh B, Rashedi H, Omidi M, Ebrahim-Habibi M, Ashrafi SJ (2017) DBT desulfurization by decorating Rhodococcus erythropolis IGTS8 using magnetic Fe3O4 nanoparticles in a bioreactor. Eng Life Sci 17:528–535CrossRefGoogle Scholar
  22. 22.
    S.R. Mofradnia, Z. Tavakoli, F. Yazdian, H. Rashedi, B. Rasekh, Fe/starch nanoparticle-Pseudomonas aeruginosa: Bio-physiochemical and MD studies, Int J Biol Macromol. (2018) #pagerange#.  https://doi.org/10.1016/j.ijbiomac.2018.04.191.CrossRefGoogle Scholar
  23. 23.
    N. Rezapour, B. Rasekh, S.R. Mofradnia, Molecular dynamics studies of polysaccharide carrier based on starch in dental cavities, Int J Biol Macromol. (2018) #pagerange#.  https://doi.org/10.1016/j.ijbiomac.2018.10.027.CrossRefGoogle Scholar
  24. 24.
    Mofradnia SR, Ashouri R, Tavakoli Z, Shahmoradi F, Rashedi H, Yazdian F (2018) Effect of zero-valent iron/starch nanoparticle on nitrate removal using MD simulation. Int J Biol MacromolGoogle Scholar
  25. 25.
    Franken LPG, Marcon NS, Treichel H, Oliveira D, Freire DMG, Dariva C, Destain J, Oliveira JV (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Technol 3:511–520CrossRefGoogle Scholar
  26. 26.
    Lee H, Kim H (2012) Self-assembly of lipids and single-walled carbon nanotubes: effects of lipid structure and PEGylation. J Phys Chem C 116:9327–9333CrossRefGoogle Scholar
  27. 27.
    Nie H, Guo W, Yuan Y, Dou Z, Shi Z, Liu Z, Wang H, Liu Y (2010) PEGylation of double-walled carbon nanotubes for increasing their solubility in water. Nano Res 3:103–109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Soltan Sabaghian
    • 1
  • Behnam Rasekh
    • 2
  • Fatemeh Yazdian
    • 3
    Email author
  • Marziyeh Shekarriz
    • 4
  • Nabiallah Mansouri
    • 1
  1. 1.Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Microbiology and Biotechnology Research GroupResearch Institute of Petroleum IndustryTehranIran
  3. 3.Department of Life Science Engineering, Faculty of New Science and TechnologiesUniversity of TehranTehranIran
  4. 4.Chemical, Polymeric and Petrochemical Technology Development Division, Faculty of Downstream Technology DevelopmentResearch Institute of Petroleum IndustryTehranIran

Personalised recommendations