Advertisement

Journal of Molecular Modeling

, 25:359 | Cite as

Adsorption of carbon dioxide and ammonia in transition metal–doped boron nitride nanotubes

  • Kleuton Antunes Lopes Lima
  • Wiliam Ferreira da Cunha
  • Fábio Ferreira Monteiro
  • Bernhard Georg Enders
  • Marcelo Lopes Pereira Jr
  • Luiz Antonio Ribeiro JrEmail author
Original Paper
  • 29 Downloads
Part of the following topical collections:
  1. VII Symposium on Electronic Structure and Molecular Dynamics – VII SeedMol

Abstract

Density functional theory calculations were carried out to analyze the performance of single-walled boron nitride nanotubes (BNNT) doped with Ni, Pd, and Pt as a sensor of CO2 and NH3. Binding energies, equilibrium distances, charge transference, and molecular orbitals, as well as the density of states, are used to study the adsorption mechanism of the gas species on the surface of the nanotube. Our results suggest a considerable rise in the adsorption potential of BNNTs when the doping scheme is employed, as compared with adsorption in pristine nanotubes. Ni-doped nanotubes are observed to be the best candidates for adsorption of both carbon dioxide and ammonia.

Graphical Abstract

Molecular orbitals distribution for CO2 adsorption on a Boron Nitride Nanotube

Keywords

Gas adsorption Transition metal doping BNNT Carbon dioxide Ammonia 

Notes

Funding information

The authors gratefully acknowledge the financial support from the Brazilian Research Councils CNPq and CAPES as well as CENAPAD-SP for providing the computational facilities. L.A.R.J. gratefully acknowledges the financial support from the Brazilian Research Council FAPDF grant 0193.001511/2017 as well as the Brazilian Ministry of Planning, Budget and Management (Grant DIPLA 005/2016). B.G.E., F.F.M., and W.F.C. also thank FAPDF for grants 0193.001556/2017, 0193.001234/2016, and 0193.001694/2017. L.A.R.J. gratefully acknowledge the financial support from CNPq grant 302236/2018.

Supplementary material

894_2019_4235_MOESM1_ESM.pdf (4.8 mb)
(PDF 4.78 MB)

References

  1. 1.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) . Science 287 (5453):622PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K (2007) . Nat Mater 6(9):652CrossRefGoogle Scholar
  3. 3.
    Collins PG, Bradley K, Ishigami M, Zettl dA (2000) . Science 287(5459):1801CrossRefGoogle Scholar
  4. 4.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) . Nature 415(6872):617CrossRefGoogle Scholar
  5. 5.
    Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) . Nano Lett 3(7):929CrossRefGoogle Scholar
  6. 6.
    Wang R, Zhu R, Zhang D (2008) . Chem Phys Lett 467(1-3):131CrossRefGoogle Scholar
  7. 7.
    Han WQ, Zettl A (2003) . J Am Chem Soc 125(8):2062CrossRefGoogle Scholar
  8. 8.
    Kalay S, Yilmaz Z, Sen O, Emanet M, Kazanc E, Çulha M (2015) . Beilstein J Nanotechnol 6(1):84PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Ciofani G (2010) . Expert Opin Drug Deliv 7(8):889CrossRefGoogle Scholar
  10. 10.
    Salvetti A, Rossi L, Iacopetti P, Li X, Nitti S, Pellegrino T, Mattoli V, Golberg D, Ciofani G (2015) . Nanomedicine 10(12):1911CrossRefGoogle Scholar
  11. 11.
    Xue Y, Jiang B, Bourgeois L, Dai P, Mitome M, Zhang C, Yamaguchi M, Matveev A, Tang C, Bando Y et al (2015) . Mater Des 88:451CrossRefGoogle Scholar
  12. 12.
    Ciofani G, Danti S, D’Alessandro D, Ricotti L, Moscato S, Bertoni G, Falqui A, Berrettini S, Petrini M, Mattoli V et al (2010) . ACS Nano 4(10):6267CrossRefGoogle Scholar
  13. 13.
    Song X, Hu J, Zeng H (2013) . J Mater Chem C 1(17):2952CrossRefGoogle Scholar
  14. 14.
    Peyghan AA, Soltani A, Pahlevani AA, Kanani Y, Khajeh S (2013) . Appl Surf Sci 270:25CrossRefGoogle Scholar
  15. 15.
    Chopra NG, Luyken R, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) . Science 269(5226):966CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Froudakis GE (2011) . Mater Today 14(7-8):324CrossRefGoogle Scholar
  17. 17.
    Zhang F, Zhao P, Niu M, Maddy J (2016) . Int J Hydrogen Energy 41(33):14535CrossRefGoogle Scholar
  18. 18.
    Pradhan BK, Sumanasekera GU, Adu KW, Romero HE, Williams KA, Eklund PC (2002) . Physica B: Condensed Matter 323(1-4):115CrossRefGoogle Scholar
  19. 19.
    Tanaka H, El-Merraoui M, Steele W, Kaneko K (2002) . Chem Phys Lett 352(5-6):334CrossRefGoogle Scholar
  20. 20.
    Delavar M, Ghoreyshi A, Jahanshahi M, Nabian N (2014) . J Exp Nanosci 9(3):310CrossRefGoogle Scholar
  21. 21.
    Esrafili MD, Behzadi H (2013) . Struct Chem 24(2):573CrossRefGoogle Scholar
  22. 22.
    Deng ZY, Zhang JM, Xu KW (2015) . Appl Surf Sci 347:485CrossRefGoogle Scholar
  23. 23.
    Chen X, Dmuchowski CM, Park C, Fay CC, Ke C (2017) . Sci Rep 7(1):11388PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Fine GF, Cavanagh LM, Afonja A, Binions R (2010) . Sensors 10(6):5469CrossRefGoogle Scholar
  25. 25.
    Gomes F, Dmitriev V, Nascimento C (2014) . J Microwaves Optoelectron Electromagn Appl 13(2):214CrossRefGoogle Scholar
  26. 26.
    Tavangar Z, Hamadanian M, Basharnavaz H (2017) . Chem Phys Lett 669:29CrossRefGoogle Scholar
  27. 27.
    Habibi-Yangjeh A, Basharnavaz H (2018) . Mol Phys 116(10):1320CrossRefGoogle Scholar
  28. 28.
    Prajesh R, Goyal V, Bhargava J, Sharma A, Agarwal A (2017) . Microsyst Technol 23(8):3027CrossRefGoogle Scholar
  29. 29.
    Delley B (1990) . J Chem Phys 92(1):508CrossRefGoogle Scholar
  30. 30.
    Delley B (2000) . J Chem Phys 113(18):7756CrossRefGoogle Scholar
  31. 31.
    Andzelm J, Kölmel C, Klamt A (1995) . J Chem Phys 103(21):9312CrossRefGoogle Scholar
  32. 32.
    Delley B (2002) . Phys Rev B 66:155125CrossRefGoogle Scholar
  33. 33.
    Smith DGA, Patkowski K (2015) . J Chem Phys C 119:4934CrossRefGoogle Scholar
  34. 34.
    Li W, Li GQ, Lu XM, Ma JJ, Zeng PY, He QY, Wang YZ (2016) . Chem Phys Lett 658:162CrossRefGoogle Scholar
  35. 35.
    Li W, Ma JJ, Liu P, Pan ZL, He QY (2015) . App Surf Sci 335:17CrossRefGoogle Scholar
  36. 36.
    Li W, Lu XM, Li GQ, Ma JJ, Zeng PY, Chen JF, Pan ZL, He QY (2016) . App Surf Sci 364:560CrossRefGoogle Scholar
  37. 37.
    Mahdavifar Z, Abbasi N, Shakerzadeh E (2013) . Sensors Actuat 185:512CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Liu Y, Meng Z, Ning C, Xiao C, Deng K, Jena P, Lu R (2018) . Phys Chem Chem Phys 20:17599CrossRefGoogle Scholar
  39. 39.
    Dandeliya S, Srivastava A (2015) 2015 IEEE international symposium on nanoelectronic and information systems, pp 268–271Google Scholar
  40. 40.
    Chermahini AN, Teimouri A (2017) . J Chin Chem Soc 64:250CrossRefGoogle Scholar
  41. 41.
    Santucci S, Picozzi S, Gregorio FD, Lozzi L, Cantalini C, Valentini L, Kenny JM, Delley B (2003) . J Chem Phys 119:10904CrossRefGoogle Scholar
  42. 42.
    Monkhorst HJ, Pack JD (1976) . Phys Rev B 13:5188CrossRefGoogle Scholar
  43. 43.
    Paura ENC, da Cunha WF, Roncaratti LF, Martins JBL, e Silva GM, Gargano R (2015) . RSC Adv 5:27412CrossRefGoogle Scholar
  44. 44.
    Nguyen TTH, Le VK, Minh CL, Nguyen NH (2017) . Comp Theo Chem 1100:46CrossRefGoogle Scholar
  45. 45.
    Tontapha S, Wanno B, Amorkitabamrung V, Sang-Aroon W (2015) . Mah Int J Eng Tech 1:16Google Scholar
  46. 46.
    Paura ENC, da Cunha WF, de Oliveira Neto PH, e Silva GM, Martins JBL, Gargano R (2013) . J Phys Chem A 117:2854CrossRefGoogle Scholar
  47. 47.
    Paura ENC, da Cunha WF, Martins JBL, e Silva GM, Roncaratti LF, Gargano R (2014) . RSC Adv 4:28249CrossRefGoogle Scholar
  48. 48.
    Ahmadi A, Beheshtian J, Hadipour NL (2011) . Struc Chem 22:183CrossRefGoogle Scholar
  49. 49.
    Wu X, An W, Zeng XC (2006) . J Amer Chem Soc 128:12001CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kleuton Antunes Lopes Lima
    • 1
  • Wiliam Ferreira da Cunha
    • 1
  • Fábio Ferreira Monteiro
    • 1
  • Bernhard Georg Enders
    • 2
  • Marcelo Lopes Pereira Jr
    • 1
  • Luiz Antonio Ribeiro Jr
    • 1
    Email author
  1. 1.Institute of PhysicsUniversity of BrasiliaBrasiliaBrazil
  2. 2.Faculty of PlanaltinaUniversity of BrasiliaBrasiliaBrazil

Personalised recommendations